首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A calmodulin-sensitive adenylate cyclase was purified 3000-fold from bovine cerebral cortex using DEAE-Sephacel, calmodulin-Sepharose, and two heptanediamine-Sepharose column steps. The purified enzyme activity was stimulated by calmodulin, forskolin, 5'-guanylyl imidodiphosphate, and NaF. The molecular weight of the protein component was estimated as 328 000 with a smaller form of Mr 153 000 obtained in the presence of Mn2+. The most highly purified preparations contained major polypeptides of 150 000, 47 000, and 35 000 daltons on sodium dodecyl sulfate (SDS) gels. Photoaffinity labeling of the preparation with azido[125I]iodocalmodulin gave one product of 170 000 daltons on SDS gels. It is proposed that the catalytic subunit of the calmodulin-sensitive enzyme is 150 000 +/- 10 000 daltons and that the enzyme exists as a complex of one catalytic subunit and the stimulatory guanyl nucleotide regulatory complex. These data are consistent with the previous report that the catalytic subunit of this enzyme has a molecular weight of 150 000 +/- 10 000 [Andreasen, T.J., Heideman, W., Rosenberg, G.B., & Storm, D.R. (1983) Biochemistry 22,2757].  相似文献   

2.
E Pfeuffer  S Mollner    T Pfeuffer 《The EMBO journal》1985,4(13B):3675-3679
The non-stimulated (basal) adenylate cyclase from bovine brain cortical membranes was purified 10 000-fold to apparent homogeneity by Lubrol PX extraction and two cycles of affinity chromatography on forskolin-agarose. The final product appears as one major band (mol. wt. 115 000) on SDS-polyacrylamide gels. Further identification was achieved by affinity cross-linking using Gs (stimulatory GTP-binding protein) that was [32P]ADP-ribosylated by cholera-toxin/[32P]NAD: cross-linking with disuccinimidyl suberate gave products with mol. wts. of 160 000, approximately 270 000 and higher. The distribution of these products was dependent on the concentration of cross-linker, suggesting aggregation of two or more adenylate cyclase complexes. In contrast, photo-affinity cross-linking with 4-azidobenzoyl-[32P]Gs yielded a single product with a mol. wt. of 160 000. Purified adenylate cyclase was completely unresponsive towards stimulators (GTP-analogs, NaF) acting via Gs suggesting that this component was removed during purification. On the other hand, stimulation by forskolin and by added activated Gs was preserved but to a smaller degree as compared with the crude enzyme. In contrast, the stimulation of Ca2+/calmodulin was only marginal. Purified adenylate cyclase reversibly bound to wheat germ agglutinin-Sepharose. This suggests that bovine brain adenylate cyclase is a glycoprotein.  相似文献   

3.
A factor (ARF) that is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory, GTP-binding regulatory component (Gs) of adenylate cyclase has been purified about 2000-fold from cholate extracts of rabbit liver membranes. ARF is an intrinsic membrane protein with Mr = 21,000. The final product can be resolved into two polypeptides with very similar molecular weights; each of these has ARF activity. The ADP-ribosylation of Gs can now be studied with defined components. GTP and ARF are both necessary cofactors. The data imply that the substrates for the activated toxin are NAD and a GTP X Gs X ARF complex, and the reaction proceeds in a lipid environment. The apparent ability of ARF to bind to the alpha subunit of Gs suggests that it may play another, unknown role in the regulation of adenylate cyclase activity.  相似文献   

4.
Incubation of turkey erythrocyte membranes with cholera toxin and [32P]NAD caused toxin-dependent incorporation of 32P into a 42,000 Mr peptide which could be distinguished from toxin-independent 32P incorporation into other membrane proteins. The radiolabeled 42,000 Mr peptide could be extracted from the membranes using Lubrol PX. When toxin-treated membranes were incubated with isoproterenol and GMP before detergent solubilization, the 42,000 Mr labeled peptide was adsorbed by GTP-γ-agarose which, with the same conditions, adsorbed the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide and guanine nucleotide regulatory protein activity were coeluted from the affinity matrix by guanylyl-β,γ-imidodiphosphate, GDP, and GMP. Guanosine 5′-O-(2-thiodiphosphate), an analog of GDP which blocks guanine nucleotide- and fluoride-stimulated adenylate cyclase activity, caused elution of labeled peptide which exhibited no regulatory protein activity. Our data support the view that the 42,000 Mr peptide is part of the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide allows identification of both active and inactive regulatory protein and should be useful in monitoring the purification of the regulatory protein from turkey erythrocytes.  相似文献   

5.
6.
Monoclonal antibodies (Mabs) to the stimulatory (Ns) and inhibitory (Ni) guanine nucleotide regulatory proteins associated with adenylate cyclase have been developed. Two Mabs (2A3 and 5G12), which are of the IgG2b subclass, recognize the beta-subunits (beta) of Ns, Ni and transducin. Iodinated beta can be immunoprecipitated by either Mab coupled to Affi-Gel 10 and this can be decreased by prior incubation of the Mabs with excess unlabelled beta. The Mabs stabilize the activated state of Ns while decreasing the rate of deactivation of activated Ns in the presence of beta.  相似文献   

7.
The requirements for cholera toxin-catalyzed ADP ribosylation of the purified regulatory component of adenylate cyclase are described. In addition to the toxin, this reaction is dependent on or is facilitated by NAD, GTP, phospholipid, and a factor found associated with plasma membranes from several sources. Factor activity is heat-labile and protease-sensitive but is unaffected by treatment with N-ethylmaleimide. Gel filtration indicates that the factor behaves as a monodisperse species with a Stokes radius of 3.2 nm. The factor thus appears to be a protein that is distinct from any of the known components of adenylate cyclase. Factor activity was also detected in the cytoplasm of S49 cells. The cytoplasmic factor was smaller (Stokes radius = 2.0 nm) than the membrane-derived factor, and it was inactivated in the presence of sodium cholate. The initial rate of activation of the regulatory component of adenylate cyclase by toxin was found to be linearly related to the amount of factor present in the reaction. This has allowed the quantitation and partial purification (33-fold from detergent extracts) of the factor from turkey erythrocyte membranes.  相似文献   

8.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

9.
The adenylate cyclase activity of a participate preparation of rat cerebral cortex is composed of at least two contributing components, one of which requires a Ca2+-dependent regulator protein (CDR) for activity (Brostrom, C. O., Brostrom, M. A., and Wolff, D. J. (1977) J. Biol. Chem.252, 5677–5685). Each of these components of the activity was activated by GTP and its synthetic analog, 5-guanylylimidodiphosphate (Gpp(NH)p). The component of the adenylate cyclase activity which did not respond to CDR (CDR-independent activity) was stimulated approximately 60% by 100 μm GTP and 3.5-fold by 100 μm Gpp(NH)p. Concentrations of GTP required for maximal activation of the CDR-dependent adenylate cyclase component decreased as CDR concentrations in the assay were increased. Similarly, GTP pr Gpp(NH)p lowered the concentration of CDR required to produce half-maximal activation of this enzyme form. At saturating CDR concentrations, however, increases in activity were not observed with the addition of these nucleotides. The CDR-dependent component responded biphasically (activation followed by inhibition) to increasing free Ca2+ concentrations; both phases of this response occurred at lower free Ca2+ concentrations with GTP present in the assay. The concentration of chlorpromazine which inhibited activation of adenylate cyclase by CDR was elevated when GTP was present. The CDR-dependent form of activity, which is stabilized by CDR to thermal inactivation, was also stabilized by Gpp(NH)p. The increase in stability produced by Gpp(NH)p did not require the presence of CDR, and stabilization with both Gpp(NH)p and CDR was greater than that obtained with either Gpp(NH)p or CDR alone.  相似文献   

10.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

11.
The regulatory component of adenylate cyclase. Purification and properties   总被引:51,自引:0,他引:51  
The regulatory component (G/F) of adenylate cyclase, which has been purified previously, contains three putative subunits with molecular weights of 52,000, 45,000, and 35,000 (Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., and Gilman, A. G. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 6516-6520). The published procedure has been modified to reduce the time required for preparation and to increase the yield. Application of the improved procedure allows purification of .5 to 1.0 mg of purified G/F from 1.5 kg of frozen rabbit liver. Greater than 95% of the protein observed on sodium dodecyl sulfate polyacrylamide gels is found in the three bands mentioned above. Purified G/F has the following properties: 1. Hydrodynamic measurements in cholate indicate that purified hepatic G/F has a molecular weight of about 70,000. If G/F is activated with either fluoride or GTP analogs, its apparent molecular weight is reduced to 50,000. 2. The measurement of G/F by reconstitution with the catalytic moiety of adenylate cyclase is dependent on the concentrations of both G/F and catalytic moiety. This interaction is consistent with a model derived from a simple bimolecular binding equilibrium. 3. Purified G/F can be activated by fluoride and guanine nucleotide analogs in a Mg2+-dependent reaction. The rate of activation by guanine nucleotides is markedly stimulated by high concentrations of Mg2+, indicating a site of action of divalent metallic cations on G/F. 4. The 52,000- and 45,000-dalton polypeptides can be partially resolved by heptylamine-Sepharose chromatography. G/F fractions that are enriched in the 52,000-dalton protein reconstitute hormone-stimulated adenylate cyclase activity more efficiently and are activated by GTP analogs more rapidly than are fractions that are essentially free of this polypeptide. The 35,000-dalton protein is present in all cases.  相似文献   

12.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

13.
1. GTP and GMP-P(NH)P (guanyl-5'-yl imidodiphosphate) were observed to increase the stimulation of neural adenylate cyclase by dopamine (3,4-dihydroxyphenethylamine) and noradrenaline. 2. GMP-P(NH)P had a biphasic effect on the enzyme activity. 3. Preincubation of membranes with GMP-P(NH)P activated the enzyme by a process dependent on time and temperature. Catecholamines increased the speed and the extent of this activation. 4. Membrane fractions contained high- and low-affinity sites for GMP-P(NH)P binding: this binding was due to protein(s) of the membrane preparations. 5. Low-affinity-site binding of GMP-P(NH)P appeared to be related to the stimulatory effect on the adenylate cyclase activity.  相似文献   

14.
It has recently been suggested that adenylate cyclase activity is controlled by a regulatory cycle consisting of two reactions: a hormone induced formation of the active adenylate cyclase-GTP complex, and a subsequent turn-off reaction in which hydrolysis of the bound nucleotide reverts the system to the inactive state. To test this model each of the two reactions was measured separately and their rate constants were used to estimate the steady state adenylate cyclase and GTPase activities. The first order rate constants were kon = 3 min-1 for the activation reaction and koff = 15 min-1 for the turn-off reaction. Substitution of these rate constants in the steady state equation of the regulatory cycle gave values of hormone stimulated adenylate cyclase and GTPase activities similar to those determined by direct measurements. Treatment of the adenylate cyclase with cholera toxin caused a decrease of 96% in the rate constant of the turn-off reaction. In this case too the activities calculated from the steady state equation were in good agreement with those determined directly.  相似文献   

15.
Sodium and other monovalent cations (added as chloride salts) inhibited adenylate cyclase of luteinized rat ovary. Sodium chloride (150 mM) inhibited basal enzyme activity by 20%. Sodium chloride inhibition was enhanced to 34-54% under conditions of enzyme stimulation by guanine nucleotides (GTP and its nonhydrolyzable analog 5'-guanylyl imidodiphosphate), fluoride anion, and agonists (ovine luteinizing hormone (oLH) and the beta-adrenergic catecholamine isoproterenol) acting at stimulatory receptors linked to adenylate cyclase. Sodium chloride inhibition was dependent on salt concentration over a wide range (25-800 mM) as well as the concentrations of GTP and oLH. Inhibition by NaCl was of rapid onset and appeared to be reversible. The order of inhibitory potency of monovalent cations was Li+ greater than Na+ greater than K+. The role of individual components of adenylate cyclase in the inhibitory action of monovalent cations was examined. Exotoxins of Vibrio cholerae and Bordetella pertussis were used to determine respectively the involvement of the stimulatory and inhibitory guanine nucleotide-binding regulatory components (Ns and Ni) in NaCl inhibition. Sodium chloride inhibited cholera toxin-activated adenylate cyclase activity by 29%. Ni did not appear to mediate cation inhibition of adenylate cyclase because pertussis toxin did not attenuate inhibition by NaCl. Enzyme stimulation by agents (forskolin and Mn2+) thought to activate the catalytic component directly was not inhibited by NaCl but was instead significantly enhanced. Sodium chloride (150 mM) increased both the Kd for high-affinity binding of oLH to 125I-human chorionic gonadotropin binding sites and the Kact for oLH stimulation of adenylate cyclase by sevenfold. In contrast, NaCl had no appreciable effect on either isoproterenol binding to (-)-[125I]iodopindolol binding sites or the Kact for isoproterenol stimulation of adenylate cyclase. The results suggest that in luteinized rat ovary monovalent cations uncouple, or dissociate, Ns from the catalytic component and, in a distinct action, reduce gonadotropin receptor affinity for hormone. Dissociation of the inhibitory influence of Ni from direct catalytic activation could account for NaCl enhancement of forskolin- and Mn2+-associated activities. On the basis of these results, the spectrum of divergent stimulatory and inhibitory effects of monovalent cations on adenylate cyclase activities in a variety of tissues may be interpreted in terms of differential enzyme susceptibilities to cation-induced uncoupling of N and catalytic component functions.  相似文献   

16.
Stimulation of basal adenylate cyclase activity in membranes of neuroblastoma x glioma hybrid cells by prostaglandin E1 (PGE1) is half-maximal and maximal (about 8-fold) at 0.1 and 10 microM respectively. This hormonal effect requires GTP, being maximally effective at 10 microM. However, at the same concentrations that stimulate adenylate cyclase in the presence of GTP, PGE1 inhibited basal adenylate cyclase activity when studied in the absence of GTP, by maximally 60%. A similar dual action of PGE1 was observed with the forskolin-stimulated adenylate cyclase, although the potency of PGE1 in both stimulating and inhibiting adenylate cyclase was increased and the extent of stimulation and inhibition of the enzyme by PGE1 was decreased by the presence of forskolin. The inhibition of forskolin-stimulated adenylate cyclase by PGE1 occurred without apparent lag phase and was reversed by GTP and its analogue guanosine 5'-[gamma-thio]triphosphate at low concentrations. Treatment of neuroblastoma x glioma hybrid cells or membranes with agents known to eliminate the function of the inhibitory GTP-binding protein were without effect on PGE1-induced inhibition of adenylate cyclase. The data suggest that stimulatory hormone agonist, apparently by activating one receptor type, can cause both stimulation and inhibition of adenylate cyclase, and that the final result depends only on the activity state of the stimulatory GTP-binding protein, Gs. Possible mechanisms responsible for the observed adenylate cyclase inhibition by the stimulatory hormone PGE1 are discussed.  相似文献   

17.
1. Sepharose 6B gel-filtration analysis of soluble adenylate cyclase from bovine corpus luteum is described. Both zonal and frontal techniques of analysis were used. 2. Under conditions of zonal analysis recoveries of activity were low. It was concluded that dissociation of two or more components of the adenylate cyclase complex was occurring on the column and that the maintenance of the complex was essential for the high-activity state of the catalytic unit. Two peaks of adenylate cyclase activity, of approximate mol. wts. 45,000 and 160,000 were detected. 3. The theory of frontal analysis (or steady-state gel filtration), applied to the study of the interacting components of the adenylate cyclase complex is discussed, and activity profiles are predicted. Activity profiles obtained experimentally be frontal analysis compared well with the theoretically predicted profile and provide evidence that dissociation of a high-activity complex, with concomitant loss of activity, does occur. Recoveries of activity under conditions of frontal analysis were higher than with zonal analysis. 4. The effects of concentration and removal of detergent on the activity of the soluble enzyme are discussed.  相似文献   

18.
19.
Vesicles from guinea pig cerebral cortex prepared by homogenization in Krebs-Ringer buffer contained adenylate cyclase activity which was stimulated by the acidic amino acids, cysteine sulfinic and glutamic acids, and by norepinephrine as well as by an alkaloid, veratridine. With these vesicular preparations the concentrations of amino acids required for half-maximal stimulation were about 30 muM, only about 1/30 those necessary with intact-cell preparations. Nearly additive effects were observed when either of the active amino acids was combined with norepinephrine at their optimal concentrations.  相似文献   

20.
A gamma-aminobutyrate/benzodiazepine receptor complex has been purified from bovine cerebral cortex by an improved procedure using a zwitterionic detergent. A high affinity binding site for the chloride ion channel-blocking ligand [35S]t-butyl bicyclophosphorothionate ( TBPS ) was co-purified with the high affinity binding sites for gamma-aminobutyrate and benzodiazepines. The latter two have previously been shown to reside on the same physical structure ( Sigel , E., Stephenson , F.A., Mamalaki , C., and Barnard , E. A. (1983) J. Biol. Chem. 258, 6965-6971). The dissociation constants, as measured in assay medium containing zwitterionic detergent were 90 +/- 20 nM for TBPS and 11 +/- 4 nM for [3H]flunitrazepam, whereas the binding of [3H]muscimol, a gamma-aminobutyrate agonist, showed a more complex binding behavior with more than one site. If the same preparation was assayed in a medium containing instead Triton X-100 as the detergent, the binding of TBPS was strongly inhibited, [3H]flunitrazepam binding was unaffected, and [3H]muscimol bound to a single class of sites with a dissociation constant of 33 +/- 3 nM. Regulatory interactions were retained in the complex isolated by the improved method: [3H]flunitrazepam binding was stimulated by gamma-aminobutyrate or by pentobarbital, and in a dose-dependent manner. The same two subunit types of Mr = 53,000 and 57,000 are present in the purified receptor complex as previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号