首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GTP cyclohydrolase I (GTPCH) catalyzes the first step in pteridine biosynthesis in Nocardia sp. strain NRRL 5646. This enzyme is important in the biosynthesis of tetrahydrobiopterin (BH4), a reducing cofactor required for nitric oxide synthase (NOS) and other enzyme systems in this organism. GTPCH was purified more than 5,000-fold to apparent homogeneity by a combination of ammonium sulfate fractionation, GTP-agarose, DEAE Sepharose, and Ultragel AcA 34 chromatography. The purified enzyme gave a single band for a protein estimated to be 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme was estimated to be 253 kDa by gel filtration, indicating that the active enzyme is a homo-octamer. The enzyme follows Michaelis-Menten kinetics, with a Km for GTP of 6.5 μM. Nocardia GTPCH possessed a unique N-terminal amino acid sequence. The pH and temperature optima for the enzyme were 7.8 and 56°C, respectively. The enzyme was heat stable and slightly activated by potassium ion but was inhibited by calcium, copper, zinc, and mercury, but not magnesium. BH4 inhibited enzyme activity by 25% at a concentration of 100 μM. 2,4-Diamino-6-hydroxypyrimidine (DAHP) appeared to competitively inhibit the enzyme, with a Ki of 0.23 mM. With Nocardia cultures, DAHP decreased medium levels of NO2 plus NO3. Results suggest that in Nocardia cells, NOS synthesis of nitric oxide is indirectly decreased by reducing the biosynthesis of an essential reducing cofactor, BH4.  相似文献   

2.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

3.
Inhibition of GTP cyclohydrolase I (GTPCH) has been used as a selective tool to assess the role of de novo synthesis of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) in a biological system. Toward this end, 2,4-diamino-6-hydroxypyrimidine (DAHP) has been used as the prototypical GTPCH inhibitor. Using a novel real-time kinetic microplate assay for GTPCH activity and purified prokaryote-expressed recombinant proteins, we show that potent inhibition by DAHP is not the result of a direct interaction with GTPCH. Rather, inhibition by DAHP in phosphate buffer occurs via an indirect mechanism that requires the presence of GTPCH feedback regulatory protein (GFRP). Notably, GFRP was previously discovered as the essential factor that reconstitutes inhibition of pure recombinant GTPCH by the pathway end product BH4. Thus, DAHP inhibits GTPCH by engaging the endogenous feedback inhibitory system. We further demonstrate that L-Phe fully reverses the inhibition of GTPCH by DAHP/GFRP, which is also a feature in common with inhibition by BH4/GFRP. These findings suggest that DAHP is not an indiscriminate inhibitor of GTPCH in biological systems; instead, it is predicted to preferentially attenuate GTPCH activity in cells that most abundantly express GFRP and/or contain the lowest levels of L-Phe.  相似文献   

4.
Nocardia sp. strain NRRL 5646 contains a nitric oxide synthase (NOS) enzyme system capable of generating nitric oxide (NO) from arginine and arginine-containing peptides. To explain possible roles of the NOS system in this bacterium, guanylate cyclase (GC) and tetrahydrobiopterin (H(4)B) biosynthetic enzymes were identified in cell extracts and in culture media. Cell extracts contained GC activity, as measured by the conversion of GTP to cyclic guanosine-3',5'-monophosphate (cGMP) at 9.56 pmol of cGMP h(-1) mg of protein(-1). Concentrations of extracellular cGMP in culture media were significantly increased, from average control levels of 45 pmol cGMP liter(-1) to a maximum of 315 pmol liter(-1), in response to additions of GTP, L-arginine, H(4)B, and sodium nitroprusside to growing Nocardia cultures. On the other hand, the NOS inhibitor N(G)-nitro-L-arginine and the GC inhibitor 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one both dramatically decreased extracellular cGMP levels. Activities for GTP-cyclohydrase-1, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase, enzymes essential for H(4)B biosynthesis, were present in Nocardia culture extracts at 77.5 pmol of neopterin and 45.8 pmol of biopterin h(-1) mg of protein(-1), respectively. In Nocardia spp., as in mammals, GTP is a key intermediate in H(4)B biosynthesis, and GTP is converted to cGMP by a GC enzyme system that is activated by NO.  相似文献   

5.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

6.
Shear stress, imposed on the vascular endothelium by circulating blood, critically sustains vascular synthesis of nitric oxide (NO). Endothelial NO synthase (eNOS) activity is determined by heat shock protein 90 (HSP90), caveolin-1, and the cofactor tetrahydrobiopterin (BH4). To determine whether increased blood flow concomitantly upregulates eNOS and GTP cyclohydrolase I (GTPCH I, the rate-limiting enzyme in BH4 biosynthesis), an aortocaval fistula model in the rat was employed wherein aortic blood flow is enhanced proximal but decreased distal to the fistula. Eight weeks after the creation of the aortocaval fistula, the proximal and distal aortic segments were harvested; sham-operated rats served as controls. Vasomotor function was assessed by isometric force recording. Expression of eNOS, HSP90, caveolin-1, Akt, phosphorylated eNOS (eNOS-Ser1177), and GTPCH I were determined by Western blot analysis. Biosynthesis of BH4 and GTPCH-I activity was examined by HPLC. In the aortic segments exposed to increased flow, contractions to KCl and phenylephrine were reduced, whereas endothelium-dependent relaxations were not affected compared with sham-operated or aortic segments with reduced blood flow. Expression of eNOS, caveolin-1, phosphorylated Akt, and eNOS-Ser1177 was enhanced in aortas exposed to increased blood flow. High flow augmented levels of cGMP and BH4 and increased expression of GTPCH I. In aggregate, these findings provide the first demonstration in vivo that coordinated vascular upregulation of eNOS, and GTPCH I accompanies increased blood flow. This induction of GTPCH I increases BH4 production, thereby optimizing the generation of NO by eNOS and thus the adaptive, vasorelaxant response required in sustaining increased blood flow.  相似文献   

7.
2,4-Diamino-6-hydroxypyrimidine (DAHP) is considered a specific inhibitor of BH(4) biosynthesis and is widely used in order to elucidate the possible biological function of BH(4) in various cells. In the present study, we found that both the synthesis of tetrahydrobiopterin (BH(4)) and expression of vascular cell adhesion molecule 1 (VCAM-1) were increased in human umbilical vein endothelial cells (HUVEC) treated with proinflammatory cytokines. Thus we examined the effects of DAHP to clarify whether BH(4) might be involved in the expression of VCAM-1 in HUVEC. DAHP reduced the levels of both BH(4) and VCAM-1 induced by TNF-alpha and IFN-gamma. However, the dose-response curves of DAHP for the suppression of the VCAM-1 level and that of BH(4) level were markedly different. Supplementation with sepiapterin failed to restore the depressed VCAM-1 level, although it completely restored the BH(4) level. Furthermore, DAHP significantly reduced the VCAM-1 level under the experimental conditions using TNF-alpha alone, which failed to induce BH(4) production. Taken together, these results indicate that DAHP inhibited the expression of VCAM-1 in a BH(4)-independent manner in HUVEC. In the present study, we also found that DAHP significantly suppressed the accumulation of cytokine-induced NF-kappaB (p65) in the nucleus as well as the mRNA levels of VCAM-1 and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme of BH(4) synthesis. The data obtained in this study suggest that DAHP reduced VCAM-1 and GTPCH protein synthesis at least partially via suppressing the NF-kappaB level in the nucleus of HUVEC.  相似文献   

8.
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.  相似文献   

9.
10.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

11.
Tetrahydrobiopterin (BH4) is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GCH), 6-pyruvoyltetrahydropterin synthase (PTS), and sepiapterin reductase (SPD). GCH is the rate-limiting enzyme. BH4 is a cofactor for three pteridine-requiring monooxygenases that hydroxylate aromatic L-amino acids, i.e., tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and phenylalanine hydroxylase (PAH), as well as for nitric oxide synthase (NOS). The intracellular concentrations of BH4, which are mainly determined by GCH activity, may regulate the activity of TH (an enzyme-synthesizing catecholamines from tyrosine), TPH (an enzyme-synthesizing serotonin and melatonin from tryptophan), PAH (an enzyme required for complete degradation of phenylalanine to tyrosine, finally to CO2 + H2O), and also the activity of NOS (an enzyme forming NO from arginine), Dominantly inherited hereditary progressive dystonia (HPD), also termed DOPA-responsive dystonia (DRD) or Segawa's disease, is a dopamine deficiency in the nigrostriatal dopamine neurons, and is caused by mutations of one allele of the GCH gene. GCH activity and BH4 concentrations in HPD/DRD are estimated to be 2-20% of the normal value. By contrast, recessively inherited GCH deficiency is caused by mutations of both alleles of the GCH gene, and the GCH activity and BH4 concentrations are undetectable. The phenotypes of recessive GCH deficiency are severe and complex, such as hyperphenylalaninemia, muscle hypotonia, epilepsy, and fever episode, and may be caused by deficiencies of various neurotransmitters, including dopamine, norepinephrine, serotonin, and NO. The biosynthesis of dopamine, norepinephrine, epinephrine, serotonin, melatonin, and probably NO by individual pteridine-requiring enzymes may be differentially regulated by the intracellular concentration of BH4, which is mainly determined by GCH activity. Dopamine biosynthesis in different groups of dopamine neurons may be differentially regulated by TH activity, depending on intracellular BH4 concentrations and GCH activity. The nigrostriatal dopamine neurons may be most susceptible to a partial decrease in BH4, causing dopamine deficiency in the striatum and the HPD/DRD phenotype.  相似文献   

12.
Neural tube closure depends on nitric oxide synthase activity   总被引:1,自引:0,他引:1  
Neural tube (NT) closure is a multifactorial process that involves yet unresolved molecular mechanisms. It had been shown previously that high levels of nitric oxide (NO) block the process of NT closure in the chick embryo by inhibiting methionine synthase (MS). The MS inhibition and its effect on NT closure could be alleviated by folic acid, suggesting the involvement of the folate-methionine pathway in the process. Here we test the hypothesis that endogenous nitric oxide synthase (NOS) activity regulates the MS activity required in the process of NT closure. The experiments described here reveal that NOS activity per se, is indeed critical for NT closure in the chick embryo. Inhibition of NOS activity with either 2,4-diamino-6-hydroxypyrimidine (DAHP), which blocks biosynthesis of the NOS co-factor tetrahydrobiopterin (BH4), or with calmidazolium, which blocks calcium-calmodulin binding to NOS, resulted in reduced MS activity and consequently ablated NT closure. Addition of BH4 or the calcium ionophore A23187 restored NOS and MS activities, resulting in NT closure. The results described here imply that NOS and MS activities can serve as functional markers in this developmental process as they are essential in the process of NT closure.  相似文献   

13.
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.  相似文献   

14.
Interleukin (IL)-1 beta-induced inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans is mediated in part by nitric oxide (NO). The NO synthase cofactor 5,6,7,8-tetrahydrobiopterin (BH(4)) supports NO synthesis in many cell types and IL-1 beta-induced NO generation and inhibition of insulin secretion have been previously correlated with intracellular BH(4 )levels in rat insulinoma cells. Using rat islets and the beta cell line BRIN-BD11, we have investigated whether synthesis of BH(4) limits IL-1beta-induced NO generation and inhibition of glucose-induced insulin secretion. IL-1 beta-induced NO generation by BRIN cells and islets was reduced by 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of de novo BH(4) synthesis. Sepiapterin, the substrate for salvage pathway BH(4) synthesis, reversed this inhibitory effect of DAHP in islets but not BRIN cells. DAHP reversed IL-1 beta-induced inhibition of islet insulin secretion, an effect prevented by sepiapterin. We conclude that BH(4) generation is necessary for IL-1 beta-induced NO generation in rat islets and BRIN cells. While a contribution of non-NO mediators cannot be excluded, our results support the proposal that IL-1 beta-induced, NO-mediated inhibition of insulin secretion in rat islets is dependent on the NOS cofactor BH(4).  相似文献   

15.
J M Hevel  M A Marletta 《Biochemistry》1992,31(31):7160-7165
Nitric oxide synthase (NOS) (EC 1.14.23) catalyzes the oxidation of L-arginine to citrulline and nitric oxide. The complex reaction carried out by NOS, which involves NADPH, O2, and enzyme-bound FAD, FMN, and tetrahydrobiopterin (BH4), has only recently begun to be elucidated. Herein we report the characterization of the pterin requirement of murine macrophage NOS. Although purified NOS activity was not dependent on BH4, activity was significantly enhanced by BH4 in a concentration-dependent fashion. NOS purified in the absence of added BH4 was found to contain substoichiometric concentrations of enzyme-bound pterin, where increased concentrations of bound pterin correlated with an increase in activity when assayed in the absence of exogenous BH4. However, NOS purified in the presence of BH4 followed by gel filtration exhibited a 1 mol of pterin:1 mol of NOS 130-kDa subunit stoichiometry and activity that was essentially independent of exogenous BH4. Experiments to probe a redox role for the pterin were carried out using pterin analogues. 6(R,S)-Methyltetrahydropterin was found to increase NOS activity in enzyme purified in the absence of BH4. However, the deaza analogue, 6(R,S)-methyl-5-deazatetrahydropterin, was not only incapable of supporting enzymatic turnover but also inhibited citrulline formation in a concentration-dependent manner. Overall, these results support a role for BH4 in the NOS reaction that involves stabilization of the enzyme and redox chemistry wherein a 1:1 stoichiometry between bound pterin and NOS subunit results in maximum activity.  相似文献   

16.
Nitric oxide (NO) synthesis is induced in vascular smooth muscle cells by lipopolysaccharide (LPS) where it appears to mediate a variety of vascular dysfunctions. In some cell types tetrahydrobiopterin (BH4) synthesis has also been found to be induced by cytokines. Because BH4 is a cofactor for NO synthase, we investigated whether BH4 synthesis is required for LPS-induced NO production in rat aortic smooth muscle cells (RASMC). The total biopterin content (BH4 and more oxidized states) of untreated RASMC was below our limit of detection. However, treatment with LPS caused a significant rise in biopterin levels and an induction of NO synthesis; both effects of LPS were markedly potentiated by interferon-gamma. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis, completely abolished the elevated biopterin levels induced by LPS. DAHP also caused a concentration-dependent inhibition of LPS-induced NO synthesis. Inhibition of NO synthesis by DAHP was reversed by sepiapterin, an agent which circumvents the inhibition of biopterin synthesis by DAHP by serving as a substrate for BH4 synthesis via the pterin salvage pathway. The reversal by sepiapterin was overcome by methotrexate, an inhibitor of the pterin salvage pathway. Sepiapterin, and to a lesser extent BH4, dose-dependently enhanced LPS-induced NO synthesis, indicating that BH4 concentration limits the rate of NO production by LPS-activated RASMC. Sepiapterin also caused LPS-induced NO synthesis to appear with an abbreviated lag period phase, suggesting that BH4 availability also limits the onset of NO synthesis. In contrast to the stimulation of LPS-induced NO synthesis, observed when sepiapterin was given alone, sepiapterin became a potent inhibitor of NO synthesis in the presence of methotrexate. This is attributable to a direct inhibitory action of sepiapterin on GTP cyclohydrolase I, an activity which is only revealed after blocking the metabolism of sepiapterin to BH4. Further studies with sepiapterin, methotrexate, and N-acetylserotonin (an inhibitor of the BH4 synthetic enzyme, sepiapterin reductase) indicated that the BH4 is synthesized in RASMC predominantly from GTP; however, a lesser amount may derive from pterin salvage. We demonstrate that BH4 synthesis is an absolute requirement for induction of NO synthesis by LPS in vascular smooth muscle. Our findings also suggest that pterin synthesis inhibitors may be useful for the therapy of endotoxin- and cytokine-induced shock.  相似文献   

17.
In C6 glioma cells, the sphingolipid second messenger ceramide potentiates expression of inducible nitric-oxide synthase (iNOS) induced by tumor necrosis factor alpha (TNF-alpha) without affecting GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the biosynthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a cofactor required for iNOS activity. TNF-alpha also stimulates sphingosine kinase, the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (SPP), a further metabolite of ceramide. Several clones of C6 cells, expressing widely varying levels of sphingosine kinase, were used to examine the role of SPP in regulation of GTPCH and BH(4) biosynthesis. Overexpression of sphingosine kinase, with concomitant increased endogenous SPP levels, potentiated the effect of TNF-alpha on GTPCH expression and activity and BH(4) biosynthesis. In contrast, enforced expression of sphingosine kinase had no effect on iNOS expression or NO formation. Furthermore, N,N-dimethylsphingosine, a potent sphingosine kinase inhibitor, completely eliminated the increased GTPCH activity and expression induced by TNF-alpha. Surprisingly, we found that, although C6 cells can secrete SPP, which is enhanced by TNF-alpha, treatment of C6 cells with exogenous SPP or dihydro-SPP had no affect on BH(4) biosynthesis. However, both SPP and dihydro-SPP markedly stimulated ERK 1/2 in C6 cells, which express cell surface SPP receptors. Interestingly, although this ERK activation was blocked by PD98059, which also reduced cellular proliferation induced by enforced expression of sphingosine kinase, PD98059 had no effect on GTPCH activity. Collectively, these results suggest that only intracellularly generated SPP plays a role in regulation of GTPCH and BH(4) levels.  相似文献   

18.
Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.  相似文献   

19.
We previously reported on the occurrence, partial purification, and preliminary characterization of the first reported bacterial nitric oxide synthase. The soluble Nocardia enzyme, designated NOSNoc, has now been purified 1,353-fold by a combination of 2',5'-ADP-agarose affinity chromatography and hydroxylapatite chromatography. NOSNoc runs as a band of M(r) 51,900 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 110.6 +/- 0.5 kDa by gel filtration, indicating that the native enzyme exists as a homodimer in solution. An N-terminal 15-amino-acid sequence was determined for NOSNoc, showing it to be different from known mammalian NOSs. NG-Hydroxy-L-arginine was confirmed to be an intermediate in the enzymatic reaction by stoichiometric determinations of oxygen uptake, NADPH oxidation, NO formation as measured by nitrite determinations, citrulline formation, and kinetic studies. NOSNoc was competitively inhibited by NG-methyl- and NG-nitro-L-arginine with either L-arginine or NG-hydroxyl-L-arginine as the substrate. Furthermore, the stability and pH and temperature optima of NOSNoc have been established.  相似文献   

20.
Biosynthesis of the tetrahydrobiopterin (BH(4)) cofactor, essential for catecholamines and serotonin production and nitric oxide synthase (NOS) activity, requires the enzymes GTP cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), and sepiapterin reductase (SR). Upon studying the distribution of GTPCH and PTPS with polyclonal immune sera in cross sections of rat brain, prominent nuclear staining in many neurons was observed besides strong staining in peri-ventricular structures. Furthermore, localization studies in transgenic mice expressing a Pts-LacZ gene fusion containing the N-terminal 35 amino acids of PTPS revealed beta-galactosidase in the nucleus of neurons. In contrast, PTPS-beta-galactosidase was exclusively cytoplasmic in the convoluted kidney tubules but nuclear in other parts of the nephron, indicating again that nuclear targeting may occur only in specific cell categories. Furthermore, the N terminus of PTPS acts as a domain able to target the PTPS-beta-galactosidase fusion protein to the nucleus. In transiently transfected COS-1 cells, which do not express GTPCH and PTPS endogenously, we found cytoplasmic and nuclear staining for GTPCH and PTPS. To further investigate nuclear localization of all three BH(4)-biosynthetic enzymes, we expressed Flag-fusion proteins in transiently transfected COS-1 cells and analyzed the distribution by immunolocalization and sub-cellular fractionation using anti-Flag antibodies and enzymatic assays. Whereas 5-10% of total GTPCH and PTPS and approximately 1% of total SR were present in the nucleus, only GTPCH was confirmed to be an active enzyme in nuclear fractions. The in vitro studies together with the tissue staining corroborate specific nuclear localization of BH(4)-biosynthetic proteins with yet unknown biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号