首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA and protein of the defective avian acute leukemia virus CMII, which causes myelocytomas in chickens, and of CMII-associated helper virus (CMIIAV) were investigated. The RNA of CMII measured 6 kilobases (kb) and that of CMIIAV measured 8.5 kb. By comparing more than 20 mapped oligonucleotides of CMII RNA with mapped and nonmapped oligonucleotides of acute leukemia viruses MC29 and MH2 and with mapped oligonucleotides of CMIIAV and other nondefective avian tumor viruses, three segments were distinguished in the oligonucleotide map of CMII RNA: (i) a 5' group-specific segment of 1.5 kb which was conserved among CMII, MC29, and MH2 and also homologous with gag-related oligonucleotides of CMIIAV and other helper viruses (hence, group specific); (ii) an internal segment of 2 kb which was conserved specifically among CMII, MC29, and MH2 and whose presence in CMII lends new support to the view that this class of genetic elements is essential for oncogenicity, because it was absent from an otherwise isogenic, nontransforming helper, CMIIAV; and (iii) a 3' group-specific segment of 2.5 kb which shared 13 of 14 oligonucleotides with CMIIAV and included env oligonucleotides of other nondefective viruses of the avian tumor virus group (hence, group specific). This segment and analogous map segments of MC29 and MH2 were not conserved at the level of shared oligonucleotides. CMII-transformed cells contained a nonstructural, gag gene-related protein of 90,000 daltons, distinguished by its size from 110,000-daltom MC29 and 100,000-dalton MH2 counterparts. The gag relatedness and similarity to the 110,000-dalton MC29 counterpart indicated that the 90,000-dalton CMII protein is translated from the 5' and internal segments of CMII RNA. The existence of conserved 5' and internal RNA segments and conserved nonstructural protein products in CMII, MC29, and MH2 indicates that these viruses belong to a related group, termed here the MC29 group. Viruses of the MC29 group differ from one another mainly in their 3' RNA segments and in minor variations of their conserved RNA segments as well as by strain-specific size markers of their gag-related proteins. Because (i) the conserved 5' gag-related and internal RNA segments and their gag-related, nonvirion protein products correlate with the conserved oncogenic spectra of the MC29 group of viruses and because (ii) the internal RNA sequences and nonvirion proteins are not found in nondefective viruses, we propose that the conserved RNA and protein elements are necessary for oncogenicity and probably are the onc gene products of the MC29 group of viruses.  相似文献   

2.
J Papkoff  E A Nigg  T Hunter 《Cell》1983,33(1):161-172
The transforming gene, v-mos, of Moloney murine sarcoma virus (M-MuSV) encodes a 37,000-dalton phosphoprotein, p37mos. Since the biochemical function of this protein is unknown, we have determined the subcellular location of p37mos in M-MuSV 124-transformed cells. Using two different methods of cell lysis and fractionation, we found that newly synthesized as well as mature p37mos is a soluble cytoplasmic protein. In agreement with these results, immunofluorescent staining of cells acutely infected with M-MuSV 124, using an antiserum directed against a synthetic v-mos peptide, produced a diffuse cytoplasmic pattern. Gel filtration experiments and glycerol gradient sedimentation analysis suggest that the bulk of p37mos exists as a monomer and is not involved in a specific association with other cellular proteins. These properties of p37mos are different from those of other characterized retroviral transforming proteins.  相似文献   

3.
4.
Many of the products of the ca. 80 genes encoded by alphaherpesviruses have already been identified and, at least tentatively, functionally characterized. Among the least characterized proteins are the products of the genes homologous to herpes simplex virus UL3, which are present only in the subfamily Alphaherpesvirinae: To identify the UL3 protein of the porcine alphaherpesvirus pseudorabies virus (PrV), the complete PrV UL3 open reading frame was cloned, expressed in Escherichia coli as a glutathione S-transferase fusion protein, and used for immunization of a rabbit. In Western blots, the generated antiserum specifically detected a 34-kDa protein in PrV-infected cells, which was absent from purified virus preparations, indicating that PrV UL3 encodes a nonstructural protein. In indirect immunofluorescence analysis, the anti-UL3 serum produced predominantly nuclear staining in transfected as well as in infected cells, which was not altered in the absence of other virus-encoded nuclear proteins such as the UL31 and UL34 gene products. To investigate UL3 function, a deletion mutant, PrV-DeltaUL3F2, was constructed and characterized. This mutant replicated and formed plaques on noncomplementing cells indistinguishable from wild-type PrV, demonstrating that PrV UL3 is not required for virus propagation in cultured cells. Moreover, ultrastructural examinations revealed no impairment of capsid formation in the nucleus, nuclear egress of capsids, virion maturation in the cytoplasm, or virus release. Thus, the overall properties of PrV UL3 are similar to those described for the homologous herpes simplex virus proteins which may be indicative of a common, yet hitherto unknown, function in alphaherpesvirus replication. However, based on our studies, an involvement of the UL3 homologs in virion formation appears unlikely.  相似文献   

5.
D Braaten  H Ansari    J Luban 《Journal of virology》1997,71(3):2107-2113
Completion of an early step in the human immunodeficiency virus type 1 (HIV-1) life cycle requires incorporation into virions of the cellular peptidyl-prolyl isomerase cyclophilin A (CyPA) by the Gag polyprotein. Elucidation of the biochemical role of CyPA would be aided by a detailed analysis of the genetic requirements for the formation of the Gag-CyPA complex; previous experiments have demonstrated the requirement for a critical proline and the immediately preceding glycine, located within the capsid domain of Gag, but nothing is known about the necessary CyPA residues. Cyclophilins possess a hydrophobic pocket where proline-containing peptide substrates and the immunosuppressive drug cyclosporine A bind. In this study, we engineered five CyPA mutations, each of which alters a residue that contributes to the hydrophobic pocket. Compared with the wild-type protein, all of the mutants drastically reduced CyPA binding to HIV-1 Gag and similarly inhibited CyPA incorporation into virions. In addition, we demonstrated that previously reported differences between the Gag-binding properties of CyPA and CyPB are due to adventitious association involving residues in the signal sequence of CyPB and that the core domain of CyPB interacts with Gag in a fashion which is indistinguishable from that of CyPA. These studies indicate that, as with other proline-containing peptides or cyclosporine A, HIV-1 Gag directly contacts residues in the hydrophobic pocket of CyPA.  相似文献   

6.
R A Van Etten  P Jackson  D Baltimore 《Cell》1989,58(4):669-678
The subcellular localization of the mouse type IV c-abl protein was determined by indirect immunofluorescence of nontransformed NIH 3T3 fibroblasts that overexpress the protein. Unlike the viral transforming protein p160gag/v-abl, which has cytoplasmic and plasma membrane localization, a large fraction of the c-abl (IV) protein is nuclear, with the remainder in the cytoplasm and plasma membrane. Deletion of a small N-terminal regulatory region of the c-abl (IV) protein, sufficient to activate its transforming potential fully, changes the distribution of the protein from the nucleus to the cytoplasm. Mapping of an amino acid sequence responsible for the nuclear localization of the c-abl (IV) protein reveals a nuclear localization signal similar to that of SV40 large T antigen.  相似文献   

7.
X Hang  W Dong    L A Guarino 《Journal of virology》1995,69(6):3924-3928
The Autographa californica nuclear polyhedrosis virus (AcNPV) replicates in the nuclei of infected cells and encodes several proteins required for viral DNA replication. As a first step in the functional characterization of viral replication proteins, we purified a single-stranded DNA-binding protein (SSB) from AcNPV-infected insect cells. Nuclear extracts were chromatographed on single-stranded DNA agarose columns. An abundant protein with an apparent molecular weight of 43,000 was eluted from the columns at 0.9 to 1.0 M NaCl. This protein was not evident in extracts prepared from control cells, suggesting that the SSB was encoded by the virus. SSB bound to single-stranded DNA in solution, and binding was nonspecific with respect to base sequence, as single-stranded vector DNA competed as efficiently as single-stranded DNA containing the AcNPV origin of DNA replication. Competition binding experiments indicated that SSB showed a preference for single-stranded DNA over double-stranded DNA. To determine whether SSB was encoded by the lef-3 gene of AcNPV, the lef-3 open reading frame was cloned under the control of the bacteriophage T7 promoter. Immunochemical analyses indicated that LEF-3 produced in bacteria or in rabbit reticulocyte lysates specifically reacted with antiserum produced by immunization with purified SSB. Immunoblot analyses of infected cell extracts revealed that SSB/LEF-3 was detected by 4 h postinfection and accumulated through 48 h postinfection.  相似文献   

8.
The primary amino acid sequence of the major herpes simplex virus type 1 (HSV-1)-infected cell polypeptide 8 (ICP8) deduced from the DNA sequence of the unique long open reading frame 29 (UL29 ORF) contains a potential metal-binding domain of the form Cys-X2-5-Cys-X2-15-A-X2-4-A where A may be either histidine or cysteine and X is any amino acid. The putative metal-binding sequence in ICP8 encompasses residues 499-512 as follows: C-N-L-C-T-F-D-T-R-H-A-C-V-H-. Atomic absorption analysis of several preparations of ICP8 indicates the presence of 1 mol of zinc/mol of protein. The zinc is resistant to removal by dialysis against concentrations of EDTA which deplete zinc from alcohol dehydrogenase. The bound zinc can be removed by reaction with the reversible sulfhydryl reagent p-hydroxymercurimethylsulfonate and the zinc-depleted protein transiently retains DNA binding activity. Digestion of both native and zinc-depleted ICP8 with V8 protease indicates that the bound zinc is required for the structural integrity of the protein.  相似文献   

9.
We screened a recombinant chicken DNA/lambda phage library for sequences homologous to the transformation-specific sequences of the avian acute leukemia virus MC29 by hybridization with molecularly cloned MC29 proviral DNA. Three cellular DNA clones were found and compared with each other and with the viral genome by physical mapping with restriction endonucleases and by heteroduplex analysis. These experiments indicated that the three cellular clones overlap and represent a single cellular locus. The RNA genome of MC29 and normal cell DNA share a homologous region of 1.6 kilobases which is interrupted in the cellular DNA by 1.0 kilobase of sequences not present in the viral genome. Hybridization of the cloned cellular DNA to viral RNA and analysis of the protected viral RNA by fingerprinting techniques indicated that there is extensive sequence homology between the helper virus-unrelated mcv sequences of the viral RNA and the cellular DNA, with only minor base differences. The cellular mcv locus, however, lacks all helper virus-related sequences of MC29, including those of the partial viral gag gene which, together with mcv, encodes the probable transforming protein of MC29. We conclude that although the mcv locus of the normal cell does not represent a complete structural homolog to the onc gene of MC29, it is probably the precursor to the onc-specific sequence in the virus.  相似文献   

10.
The functional role of the phi 29-encoded integral membrane protein p16.7 in phage DNA replication was studied using a soluble variant, p16.7A, lacking the N-terminal membrane-spanning domain. Because of the protein-primed mechanism of DNA replication, the bacteriophage phi 29 replication intermediates contain long stretches of single-stranded DNA (ssDNA). Protein p16.7A was found to be an ssDNA-binding protein. In addition, by direct and functional analysis we show that protein p16.7A binds to the stretches of ssDNA of the phi 29 DNA replication intermediates. Properties of protein p16.7A were compared with those of the phi 29-encoded single-stranded DNA-binding protein p5. The results obtained show that both proteins have different, non-overlapping functions. The likely role of p16.7 in attaching phi 29 DNA replication intermediates to the membrane of the infected cell is discussed. Homologues of gene 16.7 are present in phi 29-related phages, suggesting that the proposed role of p16.7 is conserved in this family of phages.  相似文献   

11.
12.
RFP is a DNA binding protein associated with the nuclear matrix.   总被引:4,自引:0,他引:4       下载免费PDF全文
We reported that the RFP gene encodes a protein with putative zinc finger domains and was involved in the activation of the ret proto-oncogene. To further characterize the RFP protein, we developed a polyclonal antibody against the product synthesized from a fragment of the RFP cDNA expressed in Escherichia coli. Western blot analysis showed that RFP was identified as a 58 kDa protein in cell lysates from four human and rodent cell lines and from mouse testis. In addition, a unique 68 kDa protein was detected in the testis. Using AH7974 (rat ascites hepatoma) and Raji (human Burkitt lymphoma) cells, we demonstrated strong association of RFP with the nuclear matrix. Furthermore, RFP solubilized from the nuclear matrix had DNA-binding activity although it appears to bind more preferentially to double-stranded DNA than to single-stranded DNA. These results thus suggest that RFP may play a role in molecular processes which occur in the nuclear matrix.  相似文献   

13.
14.
15.
The 72-kilodalton adenovirus DNA-binding protein (DBP) binds to single-stranded DNA as well as to RNA and double-stranded DNA and is essential for the replication of viral DNA. We investigated the binding of DBP to double-stranded DNA by gel retardation analysis. By using a 114-base-pair DNA fragment, five or six different complexes were observed by gel retardation. The mobility of these complexes is dependent on the DBP concentration, suggesting that the complexes arise by sequential binding of DBP molecules to the DNA. In contrast to binding to single-stranded DNA, the binding of DBP to double-stranded DNA appears to be noncooperative. DBP binds to linear DNA as well as to circular DNA, while linear DNA containing the adenovirus terminal protein was also recognized. No specificity for adenovirus origin sequences was observed. To study whether the binding of DBP could influence initiation of DNA replication, we analyzed the effect of DBP on the binding of nuclear factor I (NFI) and NFIII, two sequence-specific origin-recognizing proteins that enhance initiation. At subsaturating levels of NFI, DBP increases the rate of binding of NFI considerably, while no effect was seen on NFIII. This stimulation of NFI binding is specific for DBP and was not observed with another protein (NFIV), which forms a similar DNA-multimeric protein complex. In agreement with enhanced NFI binding, DBP stimulates initiation of adenovirus DNA replication in vitro especially strongly at subsaturating NFI concentrations. We explain our results by assuming that DBP forms a complex with origin DNA that promotes formation of an alternative DNA structure, thereby facilitating the binding of NFI as well as the initiation of DNA replication via NFI.  相似文献   

16.
17.
To analyze proteolytic processing of foamy (spuma) retroviruses, two mutations were generated in the presumed active-site triplet Asp-Ser-Gly in the predicted proteinase (PR) region of the human foamy virus (HSRV). The mutations changed either the presumed catalytic aspartic acid residue to a catalytically incompetent alanine or the adjacent serine to a threonine found in most cellular and retroviral proteases at this position. Both mutations were cloned into the full-length infectious HSRV DNA clone. Wild-type and S/T mutant genomes directed the synthesis of particles with similar infectious titers, while the HSRV D/A PR mutant was noninfectious. Immunoblot analysis of transfected cells revealed identical patterns for the wild-type and for the S/T PR mutant. HSRV D/A mutant-transfected cells expressed only a single Gag polyprotein of 78 kDa instead of the 78-kDa-74-kDa doublet found in HSRV-infected or wild-type-transfected cells. Analysis with pol-specific antisera yielded a protein of approximately 120 kDa reactive with antisera against pol- but not gag-specific domains. No Gag-Pol polyprotein was detected in this study. Electron microscopy analysis of transfected cells showed heterogeneous particle morphology in the case of the D/A mutant, with particles of normal appearance and particles of aberrant size and shape. These results indicate that foamy viruses have an aspartic PR that is essential for infectivity but not for formation of the 120-kDa Pol polyprotein.  相似文献   

18.
McCown MF  Pekosz A 《Journal of virology》2006,80(16):8178-8189
The cytoplasmic tail of the influenza A virus M2 protein is highly conserved among influenza A virus isolates. The cytoplasmic tail appears to be dispensable with respect to the ion channel activity associated with the protein but important for virus morphology and the production of infectious virus particles. Using reverse genetics and transcomplementation assays, we demonstrate that the M2 protein cytoplasmic tail is a crucial mediator of infectious virus production. Truncations of the M2 cytoplasmic tail result in a drastic decrease in infectious virus titers, a reduction in the amount of packaged viral RNA, a decrease in budding events, and a reduction in budding efficiency. The M1 protein binds to the M2 cytoplasmic tail, but the M1 binding site is distinct from the sequences that affect infectious virus particle formation. Influenza A virus strains A/Udorn/72 and A/WSN/33 differ in their requirements for M2 cytoplasmic tail sequences, and this requirement maps to the M1 protein. We conclude that the M2 protein is required for the formation of infectious virus particles, implicating the protein as important for influenza A virus assembly in addition to its well-documented role during virus entry and uncoating.  相似文献   

19.
M Gao  D M Knipe 《Journal of virology》1989,63(12):5258-5267
We have isolated several mutant herpes simplex viruses, specifically mutated in the infected cell protein 8 (ICP8) gene, to define the functional domains of ICP8, the major viral DNA-binding protein. To facilitate the isolation of these mutants, we first isolated a mutant virus, HD-2, with the lacZ gene fused to the ICP8 gene so that an ICP8-beta-galactosidase fusion protein was expressed. This virus formed blue plaques on ICP8-expressing cell lines in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Mutated ICP8 gene plasmids cotransfected with HD-2 DNA yielded recombinant viruses with the mutant ICP8 gene incorporated into the viral genome. These recombinants were identified by formation of white plaques. Four classes of mutants were defined: (i) some expressed ICP8 that could bind to DNA but could not localize to the cell nucleus; (ii) some expressed ICP8 that did not bind to DNA but localized to the nucleus; (iii) some expressed ICP8 that neither bound to DNA nor localized to the nucleus; and (iv) one expressed ICP8 that localized to the cell nucleus and bound to DNA in vitro, but the mutant virus did not replicate its DNA. These classes of mutants provide genetic evidence that DNA binding and nuclear localization are distinct functions of ICP8 and that ICP8 has nuclear functions other than binding to DNA. Furthermore, the portion of ICP8 needed for a nuclear function(s) distinct from DNA binding is the part of ICP8 showing sequence similarity to that of the cellular protein cyclin or proliferating cell nuclear antigen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号