首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In our previous study, we found that the transforming growth factor (TGF)-β1 enhanced the metastatic and invasive potential of gastric cancer cells. Proteomics was employed in this study to further illustrate the underlying molecular mechanisms. After two-dimensional electrophoresis, image analysis, spot identification, protein identification and database analysis, three proteins, namely, glutathione-S-transferase-π (GST-π), cofilin and heat shock protein 27 (HSP27), were found to be up-regulated in TGF-β1 treated SGC-7901 cells. The findings were further confirmed by Western blot analysis. These results suggested that GST-π, cofilin and HSP27 might participate in enhanced invasive potential induced by TGF-β1.  相似文献   

2.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

3.
MDA-MB-231 breast cancer cells have a high invasive potential, yet the mechanisms involved are not known. This study showed that Toll-like receptor 2 (TLR2) was highly expressed in MDA-MB-231 cells and played a critical role in cell invasion. Compared with the poorly invasive MCF-7 cells, MDA-MB-231 cells expressed 10.5-fold more TLR2. Using TLR2 agonist pg-LPS and TLR2 neutralizing antibody, we found that TLR2 activation significantly promoted MDA-MB-231 invasion, whereas TLR2 blockade diminished this capacity. TLR2 activation enhanced the activity of NF-κB and induced phosphorylation of TAK1 and IκBα in the TLR2/NF-κB signaling pathway in MDA-MB-231, but not in MCF-7 cells. TLR2 activation increased IL-6, TGF-β, VEGF and MMP9 secretion, which are associated with TLR2-NF-κB signaling. We demonstrated that TLR2 is a critical receptor responsible for NF-κB signaling activity and highly invasive capacity of MDA-MB-231 cells.  相似文献   

4.
5.
Polysaccharides isolated from Inonotus obliquus (PLIO) have been known to have various pharmacological activities including antioxidant, immunostimulating and anti-tumor activity. However, the anti-metastatic effect of PLIO in human non-small cell lung carcinoma (NSCLC) has not been elucidated. In this study, we investigated the effects of PLIO on the metastatic potential of human NSCLC A549 cells and its underlying mechanisms. PLIO suppressed the invasive potential of A549 cells throughout reducing matrix metalloproteinase (MMP) expression. PLIO treatment inhibited NF-κB nuclear translocation in A549 cells. In addition, PLIO treatment inhibited the phosphorylation of JNK/AKT in A549 cells. These results suggest that PLIO could inhibit human NSCLC invasion via suppression of AKT/NF-κB signaling pathway.  相似文献   

6.
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/ A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogenactivated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPKdependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer.  相似文献   

7.
High thymidine phosphorylase (TP) expression is significantly correlated with poor prognosis in patients with nasopharyngeal carcinoma (NPC). NPC is an Epstein-Barr Virus (EBV)-associated cancer in which the EBV-encoded oncogene product, latent membrane protein 1 (LMP1), is expressed in approximately 60% of tumor tissues. However, no previous study has examined whether LMP1 is involved in up-regulating TP expression in NPC tissues. We herein show that LMP1 expression is correlated with TP expression in tumor cells, as examined by quantitative RT-PCR and immunohistochemical staining. We further show that the CTAR1 and CTAR2 domains of LMP1 mediate TP induction, as demonstrated by quantitative RT-PCR and Western blot analyses using LMP1 deletion and site-specific mutants. Mechanistically, LMP1-mediated TP induction is abolished by inhibitors of NF-κB and p38 MAPK, dominant-negative IκB and p38, and siRNA-mediated knockdown of p38 MAPK. Clinically, there were significant correlations among the expression levels of TP, activated p65, and phospho-p38 MAPK in NPC biopsy samples. Functionally, LMP1-mediated induction of TP expression enhanced the sensitivity of NPC cells to the chemotherapeutic prodrug, 5'-DFUR. Our results provide new insights into the roles of LMP1-mediated NF-κB and p38 MAPK signaling pathways in TP induction, potentially suggesting new therapeutic strategies for the treatment of NPC.  相似文献   

8.
9.
肾细胞癌(RCC)是最常见的恶性癌之一,癌症转移是目前导致肾癌患者死亡的主要原因之一。MMP-9被发现在许多具有侵袭性和转移能力的人类癌症中过表达,其表达和分泌受到NF-κB调控;VEGF在维持原发性癌和转移瘤生长所需的血管生成中发挥重要作用,其表达也受到活化的NF-κB调节。海参的多种活性物质在抗氧化、抗菌和抗癌方面都有出色的作用,而抗癌的主要机制则包括诱导癌细胞凋亡、抑制癌细胞生长、减少癌细胞转移等。本研究通过利用不同浓度的海参多糖处理人肾癌细胞A498,采用MTT细胞增殖实验、粘附实验、迁移实验和小室侵袭实验,研究了海参多糖对A498细胞的生长转移的影响;采用蛋白印记法检测了海参多糖对A498细胞内MMP-9、NF-κBp65和VEGF表达水平的影响。结果表明,海参多糖能够显著抑制A498细胞的增殖活力、粘附能力、迁移能力和侵袭能力,并且全都表现出明显的剂量依赖性;中浓度(100μg/mL)和高浓度(200μg/mL)的海参多糖能够显著下调A498细胞内MMP-9、NF-κBp65和VEGF的表达。这些结果说明海参多糖能有效抑制人肾癌细胞A498的生长、转移和侵袭,可能的机制是通过抑制NF-κB信号通路下调MMP-9和VEGF的表达,从而发挥抗癌细胞转移的作用。  相似文献   

10.
11.
Advanced glycation end products (AGEs) are harmful compounds generated by nonspecific glycation of proteins and lipids. The accumulation of AGEs is associated with various diseases, including breast cancer. AGEs have been shown to promote a breast cancer cell line by enhancing proliferation, invasion and migration. In this study, we investigated the effect and associated mechanism of AGEs on triple negative breast cancer cells. AGEs enhanced the proliferation, tumorigenicity, invasion and migration of primary breast cancer cells. AGEs also enhanced the RNA and protein expression of matrix metalloproteinase (MMP)-9 and its gelatinase activity. Enhanced MMP-9 expression was mediated by extracellular-signal regulated kinase (ERK) and nuclear factor kappa B (NF-κB) pathways. Moreover, inhibitors of ERK and NF-κB signaling attenuated the effect of AGEs on tumorigenicity, invasion and migration of primary breast cancer cells. Taken together, we suggest that AGEs directly promote primary breast cancer cells via the ERK and NF-κB pathway, which may lead to advanced therapeutic modalities of breast cancer.  相似文献   

12.
Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21(waf-1) and p27(Kip1) ; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice.  相似文献   

13.
HSP27 is a member of the small HSP family which has been linked to different signaling pathways regulating critical cellular functions. But the role of HSP27 in LPS-induced inflammatory signaling pathways is still unclear. In the present study, both overexpression and RNA interference experiments indicated that HSP27 increased LPS-induced expression of iNOS and COX-2 and release of NO/PGE2 through enhancing NF-κB but not MAPK activation. The effects of HSP27 on LPS-induced iNOS/COX-2 expression and relative signaling cascade were closely related with the phosphorylation of HSP27. Further studies have shown that HSP27-regulated LPS-induced activation of NF-κB by interacting with TRAF6 and increasing the association of TRAF6-IKKγ. This could be a probable mechanism by which HSP27 modulates LPS-induce inflammatory signaling pathways. Thus, HSP27 may play a potential role in regulating inflammatory responses in immunologic system.  相似文献   

14.
Oral squamous cell carcinoma (OSCC) has a striking tendency to migrate and metastasize. Cysteine-rich 61 (Cyr61), from the CCN gene family, is a secreted and matrix-associated protein, which is involved in many cellular activities such as growth and differentiation. However, the effects of Cyr61 on human OSCC cells are largely unknown. In this study, we found that Cyr61 increased the migration and the expression of matrix metalloproteinases-3 (MMP)-3 in human OSCC cells. αvβ5 or α6β1 monoclonal antibody (mAb), focal adhesion kinase (FAK) inhibitor, and mitogen-activated protein kinase (MEK) inhibitors (PD98059 and U0126) inhibited the Cyr61-induced increase of the migration and MMP-3 up-regulation of OSCC cells. Cyr61 stimulation increased the phosphorylation of FAK, MEK, and extracellular signal-regulated kinase (ERK). In addition, NF-κB inhibitors suppressed the cell migration and MMP-3 expression enhanced by Cyr61. Moreover, Cyr61 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-3 promoter. Taken together, our results indicate that Cyr61 enhances the migration of OSCC cells by increasing MMP-3 expression through the αvβ3 or α6β1 integrin receptor, FAK, MEK, ERK, and NF-κB signal transduction pathway.  相似文献   

15.
The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser(473)-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133(+) PC cells and the bulk tumor mass of CD133(-) PC cells. Importantly, all of these biomarkers were also overexpressed in 80-100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states.  相似文献   

16.
17.
Primary liver cancer is one of the highly malignant tumours. The traditional surgery, chemotherapy and radiation therapy only established 6% of 5-year survival rate in HCC (hepatocellular carcinoma). Therefore there is an urgent need to develop new therapeutic strategies. HSP90 (heat shock protein 90) is one of the important molecular chaperones and was identified with high expression in the primary liver cancer. In this study, we evaluated the therapeutic effect of specific HSP90 inhibitor 17-DMAG (17-dimethylaminoethylamino-17-demethoxy geldanamycin) in HCC cells. The time and concentration effects of 17-DMAG were investigated in HCC cells. Cell proliferation was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and cell counting. Apoptosis was detected by flow cytometry with staining of Annexin V-FITC/PI (propidium iodide). The protein levels of survivin, cyclin D1, p53 and NF-κB (nuclear factor κB) were measured by Western blotting. 17-DMAG inhibited the proliferation of HCC cells in a time- and concentration-dependent manner. Treatment with 400 nmol/l 17-DMAG for 48 h significantly induced early-stage apoptosis (22.4%). Conversely, it induced less late-stage apoptosis (3.03%). The 5 mg/l of cisplatin induced significantly less early-stage apoptosis (6.5%), but similar proportion of late-stage apoptosis (4.89%) compared with 17-DMAG. Inhibition of HSP90 activity by 400 nmol/l 17-DMAG decreased protein levels of survivin, cyclin D1 and NF-κB protein levels, whereas increased p53 protein level. HSP90 plays a key role in HCC cell growth and survival through regulation of survivin, cyclin D1, p53 and nucleus NF-κB protein levels and the specific HSP90 inhibitor 17-DMAG can play a therapeutic role in HCC treatment.  相似文献   

18.
Zhang G  Wang Y  Zhang Y  Wan X  Li J  Liu K  Wang F  Liu K  Liu Q  Yang C  Yu P  Huang Y  Wang S  Jiang P  Qu Z  Luan J  Duan H  Zhang L  Hou A  Jin S  Hsieh TC  Wu E 《Current molecular medicine》2012,12(2):163-176
The purpose of this study was to test the hypothesis that administration of epigallocatechin-3-gallate (EGCG), a polyphenol present in abundance in widely consumed tea, inhibits cell proliferation, invasion, and angiogenesis in breast cancer patients. EGCG in 400 mg capsules was orally administered three times daily to breast cancer patients undergoing treatment with radiotherapy. Parameters related to cell proliferation, invasion, and angiogenesis were analyzed while blood samples were collected at different time points to determine efficacy of the EGCG treatment. Compared to patients who received radiotherapy alone, those given radiotherapy plus EGCG for an extended time period (two to eight weeks) showed significantly lower serum levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and reduced activation of metalloproteinase-9 and metalloproteinase-2 (MMP9/MMP2). Addition of sera obtained from patients treated with combination of radiotherapy and EGCG feeding for 2-8 weeks to in vitro cultures of highly-metastatic human MDA-MB-231 breast cancer cells resulted in the following significant changes: (1) suppression of cell proliferation and invasion; (2) arrest of cell cycles at the G0/G1 phase; (3) reduction of activation of MMP9/MMP2, expressions of Bcl-2/Bax, c-Met receptor, NF-κB, and the phosphorylation of Akt. MDA-MB-231 cells exposed to 5-10 μM EGCG also showed significant augmentation of the apoptosis inducing effects of γ-radiation, concomitant with reduced NF-κB protein level and AKT phosphorylation. These results provide hitherto unreported evidence that EGCG potentiated efficacy of radiotherapy in breast cancer patients, and raise the possibility that this tea polyphenol has potential to be a therapeutic adjuvant against human metastatic breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号