共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
小眼畸形转录因子(MITF)不仅是黑色素细胞发育、增殖和存活的必要调节因子,而且对调节相关酶和黑素体蛋白表达来确保黑色素产生具有至关重要的作用。MITF下游色素相关基因在小鼠毛囊生长周期中的表达及相关性仍有待研究。HE染色结果表明不同毛囊时期的小鼠毛囊呈现典型的组织形态学结构;免疫组织化学显示,MITF、GPNMB、OA1、TYR、TYRP2在不同毛囊生长周期中的毛基质及内外毛根鞘均有不同程度的阳性表达。黑色素测定结果表明,在毛囊生长初期和中期,碱性可溶性总黑色素(ASM)、真黑素(EM)以及褐黑素(PM)相对含量高于毛囊生长末期。蛋白免疫印迹结果表明,MITF、GPNMB、OA1、TYR、TYRP2在毛囊生长初期和中期蛋白质相对水平明显高于毛囊生长末期。实时荧光定量PCR结果表明,
MITF、GPNMB、OA1、TYR、TYRP2、PMEL在毛囊生长初期和中期,mRNA相对表达量显著高于毛囊生长末期。在不同毛囊生长周期小鼠皮肤的MITF下游色素相关基因表达存在显著差异,表明上述因子在维持黑色素细胞色素生成是不可或缺的因素。 相似文献
4.
Ji Young Kim Jihee Kim Yuri Ahn Eun Jung Lee Shinwon Hwang Abdurrahman Almurayshid Keedon Park Hwa‐Jee Chung Heung Jae Kim Si‐Hyung Lee Myung‐Shik Lee Sang Ho Oh 《Pigment cell & melanoma research》2020,33(3):403-415
Autophagy regulates cellular turnover by disassembling unnecessary or dysfunctional constituents. Recent studies demonstrated that autophagy and its regulators play a wide variety of roles in melanocyte biology. Activation of autophagy is known to induce melanogenesis and regulate melanosome biogenesis in melanocytes. Also, autophagy induction was reported to regulate physiologic skin color via melanosome degradation, although the downstream effectors are not yet clarified. To determine the role of autophagy as a melanosome degradation machinery, we administered several autophagy inducers in human keratinocytes and melanocytes. Our results showed that the synthetic autophagy inducer PTPD‐12 stimulated autophagic flux in human melanocytes and in keratinocytes containing transferred melanosomes. Increased autophagic flux led to melanosome degradation without affecting the expression of MITF. Furthermore, the color of cell pellets of both melanocytes and keratinocytes was visibly lightened. Inhibition of autophagic flux by chloroquine resulted in marked attenuation of PTPD‐12‐induced melanosome degradation, whereas the expression of melanogenesis pathway genes and proteins remained unaffected. Taken together, our results suggest that the modulation of autophagy can contribute to the regulation of melanocyte biology and skin pigmentation. 相似文献
5.
Mark D. Lucock 《American journal of physical anthropology》2023,180(2):252-271
This review examines putative, yet likely critical evolutionary pressures contributing to human skin pigmentation and subsequently, depigmentation phenotypes. To achieve this, it provides a synthesis of ideas that frame contemporary thinking, without limiting the narrative to pigmentation genes alone. It examines how geography and hence the quality and quantity of UV exposure, pigmentation genes, diet-related genes, vitamins, anti-oxidant nutrients, and cultural practices intersect and interact to facilitate the evolution of human skin color. The article has a strong focus on the vitamin D-folate evolutionary model, with updates on the latest biophysical research findings to support this paradigm. This model is examined within a broad canvas that takes human expansion out of Africa and genetic architecture into account. A thorough discourse on the biology of melanization is provided (includes relationship to BH4 and DNA damage repair), with the relevance of this to the UV sensitivity of folate and UV photosynthesis of vitamin D explained in detail, including the relevance of these vitamins to reproductive success. It explores whether we might be able to predict vitamin-related gene polymorphisms that pivot metabolism to the prevailing UVR exposome within the vitamin D-folate evolutionary hypothesis context. This is discussed in terms of a primary adaptive phenotype (pigmentation/depigmentation), a secondary adaptive phenotype (flexible metabolic phenotype based on vitamin-related gene polymorphism profile), and a tertiary adaptive strategy (dietary anti-oxidants to support the secondary adaptive phenotype). Finally, alternative evolutionary models for pigmentation are discussed, as are challenges to future research in this area. 相似文献
6.
7.
8.
Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio 下载免费PDF全文
Sandra Del Bino Shosuke Ito Juliette Sok Yukiko Nakanishi Philippe Bastien Kazumasa Wakamatsu Françoise Bernerd 《Pigment cell & melanoma research》2015,28(6):707-717
The skin constitutive pigmentation is given by the amount of melanin pigment, its relative composition (eu/pheomelanin) and distribution within the epidermis, and is largely responsible for the sensitivity to UV exposure. Nevertheless, a precise knowledge of melanins in human skin is lacking. We characterized the melanin content of human breast skin samples with variable pigmentations rigorously classified through the Individual Typology Angle (ITA) by image analysis, spectrophotometry after solubilization with Soluene‐350 and high‐performance liquid chromatography (HPLC) after chemical degradation. ITA and total melanin content were found correlated, ITA and PTCA (degradation product of DHICA melanin), and TTCA (degradation product of benzothiazole‐type pheomelanin) as well but not 4‐AHP (degradation product of benzothiazine‐type pheomelanin). Results revealed that human epidermis comprises approximately 74% of eumelanin and 26% pheomelanin, regardless of the degree of pigmentation. They also confirm the low content of photoprotective eumelanin among lighter skins thereby explaining the higher sensitivity toward UV exposure. 相似文献
9.
Laura L. Baxter Dawn E. Watkins‐Chow William J. Pavan Stacie K. Loftus 《Pigment cell & melanoma research》2019,32(3):348-358
Over the past century, studies of human pigmentary disorders along with mouse and zebrafish models have shed light on the many cellular functions associated with visible pigment phenotypes. This has led to numerous genes annotated with the ontology term “pigmentation” in independent human, mouse, and zebrafish databases. Comparisons among these datasets revealed that each is individually incomplete in documenting all genes involved in integument‐based pigmentation phenotypes. Additionally, each database contained inherent species‐specific biases in data annotation, and the term “pigmentation” did not solely reflect integument pigmentation phenotypes. This review presents a comprehensive, cross‐species list of 650 genes involved in pigmentation phenotypes that was compiled with extensive manual curation of genes annotated in OMIM, MGI, ZFIN, and GO. The resulting cross‐species list of genes both intrinsic and extrinsic to integument pigment cells provides a valuable tool that can be used to expand our knowledge of complex, pigmentation‐associated pathways. 相似文献
10.
11.
Restoration of cutaneous pigmentation by transplantation to mice of isogeneic human melanocytes in dermal–epidermal engineered skin substitutes 下载免费PDF全文
Steven T. Boyce Christopher M. Lloyd Mark C. Kleiner Viki B. Swope Zalfa Abdel‐Malek Dorothy M. Supp 《Pigment cell & melanoma research》2017,30(6):531-540
Autologous engineered skin substitutes (ESS) containing melanocytes (hM) may restore pigmentation and photoprotection after grafting to full‐thickness skin wounds. In this study, normal hM were isolated from discard skin, propagated with or without tyrosinase inhibitors, cryopreserved, recovered into culture, and added to ESS (ESS‐P) before transplantation. ESS‐P were incubated in either UCMC160/161 or UCDM1 medium, scored for hM densities, and grafted to mice. The results showed that sufficient hM can be propagated to expand donor tissue by 100‐fold; incubation of hM in tyrosinase inhibitors reduced pigment levels but did not change hM recovery after cryopreservation; hM densities in ESS‐P were greater after incubation in UCDM1 than UCMC160 medium; hM were localized to the dermal–epidermal junction of ESS‐P; and UCDM1 medium promoted earlier pigment distribution and density. These results indicate that hM can be incorporated into ESS‐P efficiently to restore cutaneous pigmentation and UV photoprotection after full‐thickness skin loss conditions. 相似文献
12.
Jessica L. Flesher Elyse K. Paterson‐Coleman Priya Vasudeva Rolando Ruiz‐Vega Michaela Marshall Eric Pearlman Grant R. MacGregor Jonathan Neumann Anand K. Ganesan 《Pigment cell & melanoma research》2020,33(2):279-292
MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF‐A and MITF‐M. The expression of MITF‐A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF‐A promoter. Mitf‐A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf‐M‐null mice have enlarged kidneys, lack neural crest‐derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF‐M in melanocytes, a minor role for MITF‐A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF‐M in size control of the kidney. 相似文献
13.
14.
The evolution of skin pigmentation has been shaped by numerous biological and cultural shifts throughout human history. Vitamin D is considered a driver of depigmentation evolution in humans, given the deleterious health effects associated with vitamin D deficiency, which is often shaped by cultural factors. New advancements in genomics and epigenomics have opened the door to a deeper exploration of skin pigmentation evolution in both contemporary and ancient populations. Data from ancient Europeans has offered great context to the spread of depigmentation alleles via the evaluation of migration events and cultural shifts that occurred during the Neolithic. However, novel insights can further be gained via the inclusion of diverse ancient and contemporary populations. Here we present on how potential biases and limitations in skin pigmentation research can be overcome with the integration of interdisciplinary data that includes both cultural and biological elements, which have shaped the evolutionary history of skin pigmentation in humans. 相似文献
15.
Meg R. Gerstenblith Jianxin Shi Maria Teresa Landi 《Pigment cell & melanoma research》2010,23(5):587-606
Recent genome-wide association studies (GWAS) identified genetic loci associated with pigmentation, nevi, and skin cancer. We performed a review and meta-analysis of GWAS results, grouping them into four categories: (i) loci associated with pigmentation (hair, eye, and/or skin color), cutaneous UV-response (sun sensitivity and/or freckling), and skin cancer; (ii) loci associated with nevi and melanoma; (iii) loci associated with pigmentation and/or cutaneous UV-response but not skin cancer; and (iv) loci associated distinctly with skin cancer, mostly basal cell carcinoma, but not pigmentation or cutaneous UV-response. These findings suggest at least two pathways for melanoma development (via pigmentation and via nevi), and two pathways for basal cell carcinoma development (via pigmentation and independent of pigmentation). However, further work is necessary to separate the association with skin cancer from the association with pigmentation. As with any GWAS, the identified loci may not include the causal variants and may need confirmation by direct genome sequencing. 相似文献
16.
17.
A Collenot C Dournon M Lauthier 《Biology of the cell / under the auspices of the European Cell Biology Organization》1989,67(1):1-7
In Pleurodeles waltl, progeny resulting from a cross between 2 individuals of the Z/W sexual genotype include 25% of W/W individuals, while those issued from crossing a Z/W neomale with a W/W thelygenous female include 50% of W/W individuals. W/W individuals can be identified through the peptidase-1 zymogram since, in P. waltl, this enzyme is controlled by codominant alleles which are linked to the sex chromosomes. In such progeny, we discovered 2 mutant phenotypes affecting larval and postmetamorphic skin pigmentation in W/W individuals. These phenotypes are described herein. The study of their inheritance in several offspring provides evidence that they are controlled by 2 distinct genes, the recessive mutant alleles of which are linked to the W sex chromosome; moreover, in thelygenous W/W females, the differential segment does not prevent the occurrence of meiotic recombinations between W sex chromosomes. Mutant skin pigmentary phenotypes are easily identified and constitute a tool for rapid, efficient selection of individuals of the W/W sexual genotype. 相似文献
18.
19.
p53 has a central role in skin pigmentation and may impact on melanoma at all stages, however, as it's mutation frequency in melanoma is low, it's role has been somewhat under-appreciated. During normal skin function, p53 in the keratinocyte is a transducer of the skin tanning signal and an essential component of what is effectively a keratinocyte-melanocyte signaling cycle that regulates skin pigmentation. It is clear that this cycle functions optimally in skin of dark pigmentation. When melanin biosynthesis is genetically disrupted in skin of white complexion, we propose that this cycle operates as a promoter of melanocyte proliferation. The cell autonomous function of p53 in melanocytes is not well described, however, the balance of the evidence suggests that p53 is an effective tumor suppressor and the myriad of mechanisms by which the p53 pathway may be dysregulated in tumors attests to it importance as a tumor suppressor. In this review, we outline the known mechanisms that impair p53 itself and its immediate regulators or target genes during melanomagenesis. Due to the importance of this pathway, it is clear that p53 disruptions may relate directly to a patient's prognosis. This pathway will continue to be a focus of investigation, particularly with respect to targeted experimental chemotherapeutics. 相似文献
20.
Although the function of the OCA2 gene product has not been totally clarified, variation in OCA2 has been associated with skin and hair pigmentation in human and mouse. However, its contribution to skin colour in domestic species has not been reported. In this study, cDNA and intron 9 sequences of the porcine OCA2 gene have been characterized in several pig populations. The cDNA sequence alignment of 20 animals from eight porcine populations allowed the identification of 10 single nucleotide polymorphisms (SNPs); five of the 10 SNPs were non-synonymous. The intron 9 sequence alignment of 12 animals belonging to four pig populations revealed four additional SNPs. Skin colour variation was analysed in a red strain of Iberian pigs with segregation of three SNPs forming two OCA2 intragenic haplotypes. Results from this study provide evidence of a suggestive dominant effect of haplotypes on colour intensity and indicate an important contribution of additive polygenic effects (h2 = 0.56 +/- 0.21) to the variance of this trait. 相似文献