首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A key step towards understanding the development and function of the central nervous system is by characterizing the connections between neurons. Tetanus toxin C fragment (TTC) is transynaptically and retrogradely transported without the toxin's pathogenic effect, and therefore, recently it has been used as a genetic tracer combined with beta-galactosidase or green fluorescent protein. Here, we introduce a new fusion construct, APTTC, consisting of the truncated human placental alkaline phosphatase with TTC, and generating the transgenic mouse line, (tetracycline operator) tetO-APTTC, for inducible expression of APTTC regulated by tetO. We demonstrate that APTTC is transported retrogradely and transynaptically, and allows us to robustly visualize the inputs of the expressing neurons when transgenetically expressed in mice, exemplified in the striatal neuronal circuit. Therefore, tetO-APTTC transgenic mouse line can be widely used for visualization of neuronal connectivity when combined with mice carrying tetracycline-controlled transactivator (tTA) in any specific neurons.  相似文献   

2.
3.
GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type.  相似文献   

4.
The versatility of stem cells has only recently been fully recognized. There is evidence that upon adoptive bone marrow (BM) transplantation (BMT), donor-derived cells can give rise to neuronal phenotypes in the brains of recipient mice. Yet only few cells with the characteristic shape of neurons were detected 1-6 mo post-BMT using transgenic or newborn mutant mice. To evaluate the potential of BM to generate mature neurons in adult C57BL/6 mice, we transferred the enhanced green fluorescent protein (GFP) gene into BM cells using a murine stem cell virus-based retroviral vector. Stable and high level long-term GFP expression was observed in mice transplanted with the transduced BM. Engraftment of GFP-expressing cells in the brain was monitored by intravital microscopy. In a long-term follow up of 15 mo post-BMT, fully developed Purkinje neurons were found to express GFP in both cerebellar hemispheres and in all chimeric mice. GFP-positive Purkinje cells were also detected in BM chimeras from transgenic mice that ubiquitously express GFP. Based on morphologic criteria and the expression of glutamic acid decarboxylase, the newly generated Purkinje cells were functional.  相似文献   

5.
Expression of GFP in GnRH neurons has allowed for studies of individual GnRH neurons. We have demonstrated previously the preservation of physiological function in male GnRH-GFP mice. In the present study, we confirm using biocytin-filled GFP-positive neurons in the hypothalamic slice preparation that GFP-expressing somata, axons, and dendrites in hypothalamic slices from GnRH-GFP rats are GnRH1 peptide positive. Second, we used repetitive sampling to study hormone secretion from GnRH-GFP transgenic rats in the homozygous, heterozygous, and wild-type state and between transgenic and Wistar males after ~4 yr of backcrossing. Parameters of hormone secretion were not different between the three genetic groups or between transgenic males and Wistar controls. Finally, we performed long-term recording in as many GFP-identified GnRH neurons as possible in hypothalamic slices to determine their patterns of discharge. In some cases, we obtained GnRH neuronal recordings from individual males in which blood samples had been collected the previous day. Activity in individual GnRH neurons was expressed as total quiescence, a continuous pattern of firing of either low or relatively high frequencies or an intermittent pattern of firing. In males with both intensive blood sampling (at 6-min intervals) and recordings from their GnRH neurons, we analyzed the activity of GnRH neurons with intermittent activity above 2 Hz using cluster analysis on both data sets. The average number of pulses was 3.9 ± 0.6/h. The average number of episodes of firing was 4.0 ± 0.6/h. Therefore, the GnRH pulse generator may be maintained in the sagittal hypothalamic slice preparation.  相似文献   

6.
Dong YL  Wang W  Li H  Li ZH  Zhang FX  Zhang T  Lu YC  Li JL  Wu SX  Li YQ 《PloS one》2012,7(3):e34435
The brainstem premotor neurons of the facial nucleus (VII) and hypoglossal (XII) nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc) and coordinate orofacial nociceptive reflex (ONR) responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG) was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt), dorsal medullary reticular formation (MdD), and supratrigeminal nucleus (Vsup). We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2) like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR.  相似文献   

7.
The purpose of this study is to evaluate green fluorescent protein (GFP) transgenic rats for use as a tool for organ transplantation research. The GFP gene construct was designed to express ubiquitously. By flow cytometry, the cells obtained from the bone marrow, spleen, and peripheral blood of the GFP transgenic rats consisted of 77, 91, and 75% GFP-positive cells, respectively. To examine cell migration of GFP-positive cells after organ transplantation, pancreas graft with or without spleen transplantation, heart graft with or without lung transplantation, auxiliary liver and small bowel transplantation were also performed from GFP transgenic rat to LEW (RT1(1)) rats under a 2-week course of 0.64 mg/kg tacrolimus administration. GFP-positive donor cells were detected in the fully allogenic LEW rats after organ transplantation. These results showed that GFP transgenic rat is a useful tool for organ transplantation research such as cell migration study after organ transplantation without donor cell staining.  相似文献   

8.
Sperm-mediated gene transfer was used to produce transgenic rabbits that expressed the porcine growth hormone gene under the control of a metallothionein promoter. The gene that encodes the selectable marker green fluorescent protein (GFP) was inserted downstream of the transgene. After lipofectin-mediated gene transfer into sperm cells and after subsequent in vitro fertilization using the transfected sperm cells, 32% of the cultured blastocysts exhibited bright green fluorescence when stimulated with blue light. Of the 74 adult rabbits and five fetal rabbits (age, gestational day 15), 2 fetuses and 29 rabbits were GFP-positive as indicated by PCR analysis. Southern blot analysis of their genomic DNA showed that 13 of 21 GFP-positive rabbits were transgenic. GFP expression was observed in different tissues of transgenic rabbits and the growth rate of four GFP-positive rabbits was greater than that of controls. PCR analysis showed that one of six F1 offspring was transgenic. These results suggest that lipofectin-mediated gene transfer into sperm cells can be used to efficiently produce transgenic rabbits.  相似文献   

9.
The efficiency of transgenic animal production would increase if microinjected embryos with a successfully integrated transgene could be identified prior to transfer. It is possible to detect microinjected DNA in embryos. However, no reliable system is able to distinguish between transgenes merely present as extrachromosomal DNA and those that have been integrated into chromatin. The experiments reported here were designed to determine if the inclusion of matrix attachment regions (MARs) would enhance the efficiency of transgenic embryos identification using a selection scheme based on the expression of green fluorescent protein (GFP). Pronuclei of mouse embryos were microinjected with GFP reporter gene under the control of three different promoters and flanked or not by three different MAR elements. Transgene expression profiles were followed by direct visualization of GFP in cultured microinjected embryos. Embryos at different developmental stages were classified according to their GFP expression and groups with the same expression pattern were transferred into oviducts of pseudopregnant female mice. Fetuses were collected between days 12–15, and their genomic DNA was purified and analyzed to detect transgene integration. We did not find any statistically significant difference between the percentage of transgenic fetuses produced from GFP-positive or GFP-negative embryos transferred at 4-cell, morula, or blastocyst stage. However, when MAR elements were included in the construct, we found that GFP-positive embryos transferred at the 2-cell stage produced a significantly higher percentage of transgenic fetuses than GFP-negative embryos, but MAR sequences did not completely eliminate false positives.  相似文献   

10.
As a prerequisite for exploring the mechanisms which lead to the formation and maintenance of the precise wiring patterns in the olfactory system, organotypic cultures of olfactory tissue from transgenic mice expressing green fluorescent protein (GFP) under control of the olfactory marker protein promotor have been established. Tissue specimen from embryonic stage 14 were explanted and kept in culture for >1 week. Within the explants, numerous GFP-fluorescent olfactory sensory neurons assembled in an epithelial-like manner during this period. Under optimized culture conditions, strongly GFP-positive axons extended from these explants, fasciculated and formed bundles. When co-cultured with explants from the olfactory bulb, distinct axon populations were attracted by the target tissue; the fluorescent axon bundles invaded the bulbular explants and formed conglomerates at distinct spots. Explants from transgenic mice expressing GFP under control of a given olfactory receptor gene (mOR37A) also comprised labeled neurons that extended intensely fluorescent axonal processes, which all seemed to grow in a common fascicle. The results demonstrate that GFP-labeled olfactory sensory neurons differentiate in the established organotypic cultures, which thus appear to be a useful tool to monitor and to manipulate the processes underlying the axonal wiring between the olfactory epithelium and bulb.  相似文献   

11.
Zebrafish is a powerful model system for investigations of vertebrate neural development. The animal has also become an important model for studies of neuronal function. Both in developmental and functional studies, transgenic zebrafish expressing fluorescent proteins in central nervous system neurons have been playing important roles. We review here the methods for producing transgenic zebrafish. Recent advances in transposon- or bacterial artificial chromosome-based transgenesis greatly facilitate the creation of useful lines. We also present our study on alx -positive neurons to reveal how transgenic zebrafish expressing fluorescent proteins in a specific class of neurons can be used to investigate their development and function.  相似文献   

12.
A highly pure and viable primordial germ cell (PGC) population appears to be an essential tool for establishing a cell line that can differentiate into a germ cell lineage and for studying the molecular biology and biochemistry of fish PGCs. Therefore, the aim of the present study was to establish a flow cytometric method for isolating highly pure and viable PGCs. As the material for PGC isolation, we used transgenic rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa-gene regulatory sequences (pvasa-GFP). Four independent transgenic strains were subjected to fluorescence microscopy and GFP-dependent flow cytometric analyses. We found that some of the pvasa-GFP transgenic strains exhibited ectopic background green fluorescence in the somatic cells aside from strong fluorescence in PGCs. Although flow cytometric analysis of genital ridge somatic cells in the four pvasa-GFP transgenic strains revealed a wide range of GFP intensities, we proved that somatic cell contamination of the GFP-positive cell population was markedly reduced if transgenic strains without the ectopic background green fluorescence were used. In addition, the forward light-scattering (FS) property, which is an indication of relative cell size, and the side light-scattering (SS) property, which is determined by cell shape and granularity, were employed to remove non-PGC contaminants from the GFP-positive cell population. By isolating GFP-positive cells with high FS/SS values, we were able to effectively remove cell blebs and the apoptotic fraction. Consequently, the purities and survival rates of isolated PGCs were greatly improved compared with those using GFP intensity as a single indicator. Thus, our flow cytometric method, in combination with the selection of suitable transgenic strains without the ectopic background green fluorescence, is capable of isolating highly pure and viable PGCs from rainbow trout. By using this method in combination with cell-cryopreservation and cell transplantation techniques, the isolated PGCs may also be used for preserving the genetic resources of endangered fish species and domesticated fish strains carrying commercially valuable traits. Mol. Reprod. Dev. 67: 91-100, 2004.  相似文献   

13.
Neural crest cells (NCC) are multipotent progenitors that migrate extensively throughout the developing embryo and generate a diverse range of cell types. Vagal NCC migrate from the hindbrain into the foregut and from there along the gastrointestinal tract to form the enteric nervous system (ENS), the intrinsic innervation of the gut, and into the developing lung buds to form the intrinsic innervation of the lungs. The aim of this study was to determine the developmental potential of vagal NCC that had already colonised the gut or the lungs. We used transgenic chicken embryos that ubiquitously express green fluorescent protein (GFP) to permanently mark and fate-map vagal NCC using intraspecies grafting. This was combined with back-transplantation of gut and lung segments, containing GFP-positive NCC, into the vagal region of a second recipient embryo to determine, using immunohistochemical staining, whether gut or lung NCC are competent of re-colonising both these organs, or whether their fate is restricted. Chick(GFP)-chick intraspecies grafting efficiently labelled NCC within the gut and lung of chick embryos. When segments of embryonic day (E)5.5 pre-umbilical midgut containing GFP-positive NCC were back-transplanted into the vagal region of E1.5 host embryos, the GFP-positive NCC remigrated to colonise both the gut and lungs and differentiated into neurons in stereotypical locations. However, GFP-positive lung NCC did not remigrate when back-transplanted. Our studies suggest that gut NCC are not restricted to colonising only this organ, since upon back-transplantation GFP-positive gut NCC colonised both the gut and the lung.  相似文献   

14.
建立了应用流式细胞仪分选植物特定类型细胞的方法。以拟南芥(Arabidopsis thaliana)Wer::GFP转基因株系为材料,用激光共聚焦显微镜鉴定GFP的表达位置,采用酶解法制备拟南芥根尖原生质体,应用流式细胞仪荧光激活细胞分选技术(FACS)分选收集GFP阳性细胞,并提取细胞的RNA。结果表明,Wer::GFP转基因株系仅在根表皮发育早期的非根毛细胞中表达GFP;利用酶解法制备的根尖原生质体数目较多;从FACS分选收集的细胞中提取的RNA质量较好,可用于研究特定类型细胞的基因表达谱。应用流式细胞仪分选拟南芥非根毛细胞的方法为研究植物特定类型细胞的基因表达谱及基因功能奠定了技术基础。  相似文献   

15.
Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological changes, as well as the opportunity to monitor reversible changes or long-term effects in the event of minor damage. As a first step, we present: a) the developmental expression in organotypic hippocampal brain slice cultures of transgenic fluorescent proteins, useful for the visualisation of neuronal subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four transgenic mouse strains which express fluorescent proteins in their neurons and/or astroglial cells. From the time of explantation, and subsequently for up to nine weeks in culture, the transgenic neuronal fluorescence displayed the expected characteristics of a developmental, in vivo-like increase, including both the number and localisation of cells, as well as the intensity of fluorescence. At that stage and later, the transgenic fluorescence clearly permitted the visualisation of cell bodies, larger and smaller dendritic branches, spines and axons. In separate experiments, with a 24-hour exposure of matured sliced cultures to 100 microM of the glutamate agonist, N-methyl-D-aspartate (NMDA), we observed, by time-lapse recording, a gradual, but rapid loss of fluorescent CA1 pyramidal cells, accompanied by astrogliosis of transgene fluorescent astroglial cells. Based on these results, we consider that organotypic brain slice cultures from transgenic mice, with fluorescent neurons and glia, combined with detailed visualisation by time-lapse fluorescence microscopy, have great potential for investigating both major irreversible and minor reversible structural changes in neurons and glia, induced by neurotoxins and other neurodegenerative compounds and conditions.  相似文献   

16.
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.  相似文献   

17.
Dong Y  Li J  Zhang F  Li Y 《PloS one》2011,6(9):e25615
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.  相似文献   

18.
Wen L  Wei W  Gu W  Huang P  Ren X  Zhang Z  Zhu Z  Lin S  Zhang B 《Developmental biology》2008,314(1):84-92
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the vmat2 gene. The GFP positive neurons include the large and pear-shaped tyrosine hydroxylase positive neurons (TH populations 2 and 4) in the posterior tuberculum of ventral diencephalon (PT neurons), which are thought to be equivalent to the midbrain dopamine neurons in mammals. We found that these PT neurons and two other GFP labeled non-TH type neuronal groups, one in the paraventricular organ of the posterior tuberculum and the other in the hypothalamus, were significantly reduced after exposure to MPTP, while the rest of GFP-positive neuronal clusters, including those in telencephalon, pretectum, raphe nuclei and locus coeruleus, remain largely unchanged. Furthermore, we showed that the effects of hedgehog signaling pathway inhibition on the development of monoaminergic neurons can be easily visualized in individual living ETvmat2:GFP embryos. This enhancer trap line should be useful for genetic and pharmacological analyses of monoaminergic neuron development and processes underlying Parkinson's disease.  相似文献   

19.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

20.
Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti: heritable transgenesis and insertional mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号