首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The folding and activation of furin occur through two pH- and compartment-specific autoproteolytic steps. In the endoplasmic reticulum (ER), profurin folds under the guidance of its prodomain and undergoes an autoproteolytic excision at the consensus furin site Arg-Thr-Lys-Arg107/ generating an enzymatically masked furin-propeptide complex competent for transport to late secretory compartments. In the mildly acidic environment of the trans-Golgi network/endosomal system, the bound propeptide is cleaved at the internal site 69HRGVTKR75/, unmasking active furin capable of cleaving substrates in trans. Here, by using cellular, biochemical, and modeling studies, we demonstrate that the conserved His69 is a pH sensor that regulates the compartment-specific cleavages of the propeptide. In the ER, unprotonated His69 stabilizes a solvent-accessible hydrophobic pocket necessary for autoproteolytic excision at Arg107. Profurin molecules unable to form the hydrophobic pocket, and hence, the furin-propeptide complex, are restricted to the ER by a PACS-2- and COPI-dependent mechanism. Once exposed to the acidic pH of the late secretory pathway, protonated His69 disrupts the hydrophobic pocket, resulting in exposure and cleavage of the internal cleavage site at Arg75 to unmask the enzyme. Together, our data explain the pH-regulated activation of furin and how this His-dependent regulatory mechanism is a model for other proteins.  相似文献   

2.
Tractin is a member of the L1 family of cell adhesion molecules in leech. Immunoblot analysis suggests that Tractin is constitutively cleaved in vivo at a proteolytic site with the sequence RKRRSR. This sequence conforms to the consensus sequence for cleavage by members of the furin family of convertases, and this proteolytic site is shared by a majority of other L1 family members. We provide evidence with furin-specific inhibitor experiments, by site-specific mutagenesis of Tractin constructs expressed in S2 cells, as well as by Tractin expression in furin-deficient LoVo cells that a furin convertase is the likely protease mediating this processing. Cross-immunoprecipitations with Tractin domain-specific antibodies suggest that the resulting NH(2)- and COOH-terminal cleavage fragments interact with each other and that this interaction provides a means for the NH(2)-terminal fragment to be tethered to the membrane. Furthermore, in S2 cell aggregation assays we show that the NH(2)-terminal fragment is necessary for homophilic adhesion and that cells expressing only the transmembrane COOH-terminal fragment are non-adhesive. However, tethering of exogeneously provided Tractin NH(2)-terminal fragment to S2 cells expressing only the COOH-terminal fragment can functionally restore the adhesive properties of Tractin.  相似文献   

3.
Activation of furin requires autoproteolytic cleavage of its 83-amino acid propeptide at the consensus furin site, Arg-Thr-Lys-Arg107/. This RER-localized cleavage is necessary, but not sufficient, for enzyme activation. Rather, full activation of furin requires exposure to, and correct routing within, the TGN/endosomal system. Here, we identify the steps in addition to the initial propeptide cleavage necessary for activation of furin. Exposure of membrane preparations containing an inactive RER-localized soluble furin construct to either: (i) an acidic and calcium-containing environment characteristic of the TGN; or (ii) mild trypsinization at neutral pH, resulted in the activation of the endoprotease. Taken together, these results suggest that the pH drop facilitates the removal of a furin inhibitor. Consistent with these findings, following cleavage in the RER, the furin propeptide remains associated with the enzyme and functions as a potent inhibitor of the endoprotease. Co-immunoprecipitation studies coupled with analysis by mass spectrometry show that release of the propeptide at acidic pH, and hence activation of furin, requires a second cleavage within the autoinhibitory domain at a site containing a P6 arginine (-Arg70-Gly-Val-Thr-Lys-Arg75/-). The significance of this cleavage in regulating the compartment-specific activation of furin, and the relationship of the furin activation pathway to those of other serine endoproteases are discussed.  相似文献   

4.
Furin, a mammalian homolog of the yeast Kex2 protease, is associated with Golgi membranes and is involved in cleavage of precursor proteins at sites marked by the Arg-X-Lys/Arg-Arg (RXK/RR) motif. We have recently shown that a furin mutant lacking the transmembrane domain can be secreted from cDNA-transfected cells with proteolytic activity for the fluorogenic peptide t-butoxycarbonyl-Arg-Val-Arg-Arg-4-methylcoumarin-7- amide. In this study, we purified and characterized the recombinant furin from the conditioned medium of these cells. Furin was purified as a mixture of 83- and 81-kDa forms and a 96-kDa form. The differences in molecular mass were not due to differences in molecular mass were not due to differences in glycosylation. Moreover, all forms had the same NH2-terminal sequence beginning at the residue after the Arg-Ala-Lys-Arg sequence. These data suggest that the three different forms may be produced by differential COOH-terminal processing of a furin molecule and that mature furin may be autocatalytically produced. Both enzyme preparations showed a pH optimum at 7.0, required Ca2+ for the activity, and showed essentially the same inhibitor profile. These properties resembled those of the Kex2 protease. Both preparations efficiently cleaved fluorogenic peptides with an RXK/RR sequence and moderately cleaved a peptide with an RXXR sequence, but did not cleave dibasic peptides. The sequence requirements determined in vitro were compatible with those determined by expression studies in cultured cells. These data unequivocally demonstrate that furin is an endogenous cellular protease responsible for cleavage of precursor proteins mainly at RXK/RR sites.  相似文献   

5.
The endoproteolytic activity previously detected in rat intestinal mucosal extracts (Beinfeld M., Bourdais, J., Kuks, P., Morel, A., and Cohen, P. (1989) J. Biol. Chem. 264, 4460-4465), was purified to homogeneity as a 65-kDa molecular species. This putative proprotein-processing enzyme cleaves the peptide bond on the carboxyl side of a single arginine residue in hepta-[Leu62-Gln-Arg-Ser-Ala-Asn-Ser68] or trideca-[Asp56-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg-Ser-Ala-Asn-+ ++Ser68] peptides, reproducing the prosomatostatin sequence around Arg64, the locus for endoproteolytic release of either somatostatin-28 or its NH2-terminal fragment, somatostatin-28-(1-12), from their common precursor. This enzyme exhibits a strict selectivity for arginyl residues, as demonstrated with related substrates, and did not cleave at lysyl residues. Moreover, only arginyl residues belonging to peptides of the prosomatostatin family were cleaved, since no hydrolysis of peptides from other prohormones was detected. In addition, the arginine residue situated at position -5 on the NH2-terminal side of Arg64 not only did not function as a cleavage locus, but had no effect on the overall cleavage kinetics of the prosomatostatin-(56-68) peptide substrate. This enzyme also cleaved, but with much less efficiency, the peptide bond on the carboxyl side of an arginine in peptides containing either an Arg-Lys or a Lys-Arg doublet corresponding to prohormone cleavage sites. This enzyme was insensitive to divalent cation chelators, was completely inhibited by aprotinin and leupeptin, and was somewhat inhibited by other serine-protease inhibitors. It is concluded that this endoprotease is a serine protease and could be involved in prohormone or proprotein post-translational processing at single arginine cleavage sites.  相似文献   

6.
This work generated many truncated proteins and Glu(385) to Ala (E(385)/A) mutants of the human metalloproteinase and thrombospondin 1 (METH-1 or ADAMTS1) and specific antibodies. METH-1 was an active endopeptidase and both the metalloproteinase and the disintegrin/cysteine-rich domains were required for the proteinase activity. A point mutation at the zinc-binding site (E(385)/A) abolished the catalytic activity. METH-1 protein function may be modulated through proteolytic cleavage at multiple sites. One 135 kDa species had an NH(2)-terminal sequence of L(33)GRPSEEDEE. A species at 115 kDa and some other protein bands began with F(236)VSSHRYV(243), indicating that METH-1 proenzyme might be activated by a proprotein convertase such as furin by cleaving the R(235)-F(236) peptide bond. This cleavage was not an autocatalytic process since the E(385)/A mutants were also processed. Furthermore, a 52 kDa band with an NH(2)-terminal sequence of L(800)KEPLTIQV resulted from the digestion between the first and the second thrombospondin 1-like motifs in the spacer region of the extracellular matrix-binding domains.  相似文献   

7.
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.  相似文献   

8.
Three different types of biotinylated endothelin 1 (ET-1) derivatives, [Cys1]-biotinylated ET-1, [Lys9]-biotinylated ET-1, and [Cys1][Lys9]-dibiotinylated ET-1, were obtained when the biotinylation reaction was carried out with sulfosuccinimidyl-6-(biotinamido)hexanoate in an aqueous solvent. The binding of [Lys9]-biotinylated ET-1 to the ET receptor was as efficient as that of natural ET-1, whereas the binding of either [Cys1]-biotinylated ET-1 or [Cys1][Lys9]-dibiotinylated ET-1 was significantly reduced. When ET-1 was reacted with succinimidyl-6-(biotinamido)hexanoate in an organic solvent, ET-1 was exclusively modified at lysine 9. The ET receptor was then isolated from human placenta by affinity chromatography with [Lys9]-biotinylated ET-1 and avidin-agarose. The purified ET receptor was active in ET binding and was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into two polypeptides with apparent molecular masses of 45 and 35 kDa. The NH2-terminal amino acid sequence indicated that the two polypeptides were from an identical subtype of the ET receptor (ETB, the ligand-nonselective type). A signal peptide from Met1 to Gly26 was missing from the 45-kDa ETB, whereas 64 amino acids at the NH2 terminus were missing from the 35-kDa ETB due to proteolytic cleavage which occurred between Arg64 and Ser65. Indeed, incubation of purified ETB with endopeptidase Arg-C resulted in degradation of the 45-kDa ETB, giving rise to the 35-kDa species by a specific cleavage at Arg64. The 35-kDa ETB was active in binding to ET-1, indicating that the NH2-terminal 64-amino-acid residues are not essential for ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

10.
Peptide neurotransmitters and hormones are synthesized as protein precursors that require proteolytic processing to generate smaller, biologically active peptides that are secreted to mediate neurotransmission and hormone actions. Neuropeptides within their precursors are typically flanked by pairs of basic residues, as well as by monobasic residues. In this review, evidence for secretory vesicle cathepsin L and Arg/Lys aminopeptidase as a distinct proteolytic pathway for processing the prohormone proenkephalin is presented. Cleavage of prohormone processing sites by secretory vesicle cathepsin L occurs at the NH2-terminal side of dibasic residues, as well as between the dibasic residues, resulting in peptide intermediates with Arg or Lys extensions at their NH2-termini. A subsequent Arg/Lys aminopeptidase step is then required to remove NH2-terminal basic residues to generate the final enkephalin neuropeptide. The cathepsin L and Arg/Lys aminopeptidase prohormone processing pathway is distinct from the proteolytic pathway mediated by the subtilisin-like prohormone convertases 1/3 and 2 (PC1/3 and PC2) with carboxypeptidase E/H. Differences in specific cleavage sites at paired basic residue sites distinguish these two pathways. These two proteolytic pathways demonstrate the increasing complexity of regulatory mechanisms for the production of peptide neurotransmitters and hormones.  相似文献   

11.
Acanthamoeba myosin IB contains a 125-kDa heavy chain that has high actin-activated Mg2+-ATPase activity when 1 serine residue is phosphorylated. The heavy chain contains two F-actin-binding sites, one associated with the catalytic site and a second which allows myosin IB to cross-link actin filaments but has no direct effect on catalytic activity. Tryptic digestion of the heavy chain initially produces an NH2-terminal 62-kDa peptide that contains the ATP-binding site and the regulatory phosphorylation site, and a COOH-terminal 68-kDa peptide. F-actin, in the absence of ATP, protects this site and tryptic cleavage then produces an NH2-terminal 80-kDa peptide. Both the 62- and the 80-kDa peptides retain the (NH+4,EDTA)-ATPase activity of native myosin IB and both bind to F-actin in an ATP-sensitive manner. However, only the 80-kDa peptide retains a major portion of the actin-activated Mg2+-ATPase activity. This activity requires phosphorylation of the 80-kDa peptide by myosin I heavy chain kinase but, in contrast to the activity of intact myosin IB, it has a simple, hyperbolic dependence on the concentration of F-actin. Also unlike myosin IB, the 80-kDa peptide cannot cross-link F-actin filaments indicating the presence of only a single actin-binding site. These results allow the assignment of the actin-binding site involved in catalytic activity to the region near, and possibly on both sides of, the tryptic cleavage site 62 kDa from the NH2 terminus, and the second actin-binding site to the COOH-terminal 45-kDa domain. Thus, the NH2-terminal 80 kDa of the myosin IB heavy chain is functionally similar to the 93-kDa subfragment 1 of muscle myosin and most likely has a similar organization of functional domains.  相似文献   

12.
The human cytomegalovirus UL80 open reading frame encodes protease and assembly protein from its N- and C-terminal regions, respectively. We reported previously that a 30-kDa protease is derived by autoproteolytic processing of a polyprotein which is the translation product of the entire UL80 open reading frame (E. Z. Baum, G. A. Bebernitz, J. D. Hulmes, V. P. Muzithras, T. R. Jones, and Y. Gluzman, J. Virol. 67:497-506, 1993). Three autoproteolytic cleavage sites within the UL80 polyprotein were characterized; site 143 is within the protease domain and inactivates the protease. In this article, we report (i) expression analyses of UL80 in infected cells, including the processing kinetics of the UL80 polyprotein; (ii) the existence of an additional cleavage site (site 209) within the protease domain of the UL80 polyprotein; and (iii) the effect of mutagenesis at each of the cleavage sites upon proteolytic activity and steady-state levels of the UL80 processing products. During the course of infection, UL80 polyprotein processing begins at cleavage site 643 and follows at sites 256 and 143. Cleavage at site 643 and/or 256 within the polyprotein is not a prerequisite for efficient protease activity, since all three proteases (85-, 80-, and 30-kDa proteins) were equally active in cleaving the assembly protein precursor to its mature form. Inhibition of cleavage at site 143 resulted in a three- to sixfold increase in the steady-state level of the 30-kDa protease, supporting the hypothesis that cleavage at this site may represent a mechanism by which cytomegalovirus regulates the level of active protease.  相似文献   

13.
The propeptide of furin has multiple roles in guiding the activation of the endoprotease in vivo. The 83-residue N-terminal propeptide is autoproteolytically excised in the endoplasmic reticulum (ER) at the consensus furin site, -Arg(104)-Thr-Lys-Arg(107)-, but remains bound to furin as a potent autoinhibitor. Furin lacking the propeptide is ER-retained and proteolytically inactive. Co-expression with the propeptide, however, restores trans-Golgi network (TGN) localization and enzyme activity, indicating that the furin propeptide is an intramolecular chaperone. Blocking this step results in localization to the ER-Golgi intermediate compartment (ERGIC)/cis-Golgi network (CGN), suggesting the ER and ERGIC/CGN recognize distinct furin folding intermediates. Following transport to the acidified TGN/endosomal compartments, furin cleaves the bound propeptide at a second, internal P1/P6 Arg site (-Arg-Gly-Val(72)-Thr-Lys-Arg(75)-) resulting in propeptide dissociation and enzyme activation. Cleavage at Arg(75), however, is not required for proper furin trafficking. Kinetic analyses of peptide substrates indicate that the sequential pH-modulated propeptide cleavages result from the differential recognition of these sites by furin. Altering this preference by converting the internal site to a canonical P1/P4 Arg motif (Val(72) --> Arg) caused ER retention and blocked activation of furin, demonstrating that the structure of the furin propeptide mediates folding of the enzyme and directs its pH-regulated, compartment-specific activation in vivo.  相似文献   

14.
Acanthamoeba myosin IA is a globular protein composed of a 140-kDa heavy chain and a 17-kDa light chain. It expresses high actin-activated Mg2+-ATPase activity when one serine on the heavy chain is phosphorylated. We previously showed that chymotrypsin cleaves the heavy chain into a COOH-terminal 27-kDa peptide that can bind to F-actin but has no ATPase activity and a complex containing the NH2-terminal 112-kDa peptide and the light chain. The complex also binds F-actin and has full actin-activated Mg2+-ATPase activity when the regulatory site is phosphorylated. We have now localized the ATP binding site to within 27 kDa of the NH2 terminus and the regulatory phosphorylatable serine to a 20-kDa region between 38 and 58 kDa of the NH2 terminus. Under controlled conditions, trypsin cleaves the heavy chain at two sites, 38 and 112 kDa from the NH2 terminus, producing a COOH-terminal 27-kDa peptide similar to that produced by chymotrypsin and a complex consisting of an NH2-terminal kDa peptide, a central 74-kDa peptide, and the light chain. This complex is similar to the chymotryptic complex but for the cleavage which separates the 38- and 74-kDa peptides. The tryptic complex has full (K+, EDTA)-ATPase activity (the catalytic site is functional) and normal ATP-sensitive actin-binding properties. However, the actin-activated Mg2+-ATPase activity and the F-actin-binding characteristics of the tryptic complex are no longer sensitive to phosphorylation of the regulatory serine. Therefore, cleavage between the phosphorylation site and the ATP-binding site inhibits the effects of phosphorylation on actin binding and actin-activated Mg2+-ATPase activity without abolishing the interactions between the ATP- and actin-binding sites.  相似文献   

15.
The eukaryotic subtilisin prohormone convertase 2 (PC2) is known to require in vivo exposure to the neuroendocrine protein 7B2 in order to produce an enzymatically active species capable of proteolytic action on prohormone substrates. In the present study, we examined the role of the pentabasic site within 27-kDa 7B2 in this process. We prepared two His-tagged recombinant 7B2s by overexpression in bacteria: 7B2-Ser-Ser (SS), with an inactivating mutation in the CT peptide from Lys171-Lys172 (KK) to SS, rendering the CT peptide non-inhibitory; blockade-SS, a double mutant of both the CT peptide as well as of the pentabasic furin cleavage site. These purified proteins were used in a cell-free proPC2 activation assay. Both 7B2-SS as well as blockade-SS were able to facilitate the activation of proPC2 (as judged by efficient production of enzyme activity), suggesting that cleavage at the furin site is not required for 7B2s lacking inhibitory CT peptides. Plasmids encoding proPC2 and various 7B2s were transiently transfected into human embryonic kidney (HEK293) cells and PC2 enzymatic activity and CT forms in each overnight conditioned medium were measured. Cells transfected with proPC2 and wild-type 7B2 secreted CT peptide cleavage products, but cells transfected with proPC2 and the blockade mutant overwhelmingly secreted intact, 27-kDa, blockaded 7B2. Medium obtained from HEK293 cells transfected with proPC2 and either wild-type 7B2, 7B2-SS, or blockade-SS exhibited PC2 activity, but medium from cells expressing the 7B2 blockade mutant did not. We conclude that cleavage at the 7B2 furin consensus site is required to produce PC2 capable of efficient proteolytic inactivation of the CT peptide.  相似文献   

16.
Identification of prodomain determinants involved in ADAMTS-1 biosynthesis   总被引:2,自引:0,他引:2  
The metalloprotease ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin type I motif), similarly to other members of the ADAMTS family, is initially synthesized as a zymogen, proADAMTS-1, that undergoes proteolytic processing at the prodomain/catalytic domain junction by serine proteinases of the furin-like family of proprotein convertases. The goals of this study were to identify residues of the prodomain that play an essential role in ADAMTS-1 processing and to determine the identity of the convertase required for zymogen processing. To gain insight into the putative roles of specific prodomain residues in ADAMTS-1 biosynthesis, we performed biosynthetic labeling experiments in transiently transfected human embryonic kidney 293 cells expressing wild-type and prodomain mutants of proADAMTS-1. Cells expressing wild-type ADAMTS-1 initially produced a 110-kDa zymogen form that was later converted to an 87-kDa form, which was also detected in the media. Although convertases such as PACE4 and PC6B processed proADAMTS-1, we found that furin was the most efficient enzyme at producing the mature ADAMTS-1 87-kDa moiety. Site-directed mutagenesis of the two putative furin recognition sequences found within the ADAMTS-1 prodomain (RRNR173 and RKKR235) revealed that Arg235 was the sole processing site. Use of the Golgi disturbing agent, Brefeldin A, and monensin suggests that the cleavage of proADAMTS-1 takes place in the Golgi apparatus prior to its secretion. Conserved residues within the prodomain of other ADAMTS members hinted that they might act as maturation determinants. Replacement with alanine of selected residues Cys106, Tyr108, Gly110, Cys125, and Cys181 and residues encompassing the 137-144 sequence significantly affected the biosynthetic profile of the enzyme. Our results suggest that conserved residues other than the furin cleavage site in the prodomain of ADAMTS-1 are involved in its biosynthesis.  相似文献   

17.
The transmembrane and multidomain neural adhesion molecule L1 plays important functional roles in the developing and adult nervous system. L1 is proteolytically processed at two distinct sites within the extracellular domain, leading to the generation of different fragments. In this report, we present evidence that the proprotein convertase PC5A is the protease that cleaves L1 in the third fibronectin type III domain, whereas the proprotein convertases furin, PC1, PC2, PACE4, and PC7 are not effective in cleaving L1. Analysis of mutations revealed Arg(845) to be the site of cleavage generating the N-terminal 140-kDa fragment. This fragment was present in the hippocampus, which expresses PC5A, but was not detectable in the cerebellum, which does not express PC5A. The 140-kDa L1 fragment was found to be tightly associated with the full-length 200-kDa L1 molecule. The complex dissociated from the membrane upon cleavage by a protease acting at a more membrane-proximal site of full-length L1. This proteolytic cleavage was inhibited by the metalloprotease inhibitor GM 6001 and enhanced by a calmodulin inhibitor. L1-dependent neurite outgrowth of cerebellar neurons was inhibited by GM 6001, suggesting that proteolytic processing of L1 by a metalloprotease is involved in neurite outgrowth.  相似文献   

18.
The epithelial sodium channel (ENaC) is activated by a unique mechanism, whereby inhibitory tracts are released by proteolytic cleavage within the extracellular loops of two of its three homologous subunits. While cleavage by furin within the biosynthetic pathway releases one inhibitory tract from the α-subunit and moderately activates the channel, full activation through release of a second inhibitory tract from the γ-subunit requires cleavage once by furin and then at a distal site by a second protease, such as prostasin, plasmin, or elastase. We now report that coexpression of mouse transmembrane protease serine 4 (TMPRSS4) with mouse ENaC in Xenopus oocytes was associated with a two- to threefold increase in channel activity and production of a unique ~70-kDa carboxyl-terminal fragment of the γ-subunit, similar to the ~70-kDa γ-subunit fragment that we previously observed with prostasin-dependent channel activation. TMPRSS4-dependent channel activation and production of the ~70-kDa fragment were partially blocked by mutation of the prostasin-dependent cleavage site (γRKRK186QQQQ). Complete inhibition of TMPRSS4-dependent activation of ENaC and γ-subunit cleavage was observed when three basic residues between the furin and prostasin cleavage sites were mutated (γK173Q, γK175Q, and γR177Q), in addition to γRKRK186QQQQ. Mutation of the four basic residues associated with the furin cleavage site (γRKRR143QQQQ) also prevented TMPRSS4-dependent channel activation. We conclude that TMPRSS4 primarily activates ENaC by cleaving basic residues within the tract γK173-K186 distal to the furin cleavage site, thereby releasing a previously defined key inhibitory tract encompassing γR158-F168 from the γ-subunit.  相似文献   

19.
Furin is a membrane-associated endoprotease that efficiently cleaves precursor proteins on the C-terminal side of the consensus sequence, Arg-X-Lys/Arg-Arg1, and has been proposed to catalyze these reactions in both exocytic and endocytic compartments. To study its biosynthesis and routing, a furin construct (designated fur/f) containing the FLAG epitope tag inserted on the C-terminal side of the enzyme's autoproteolytic maturation site was used. Introduction of the epitope tag had no effect on the expression, proteolytic maturation or activity of furin. Analysis of the localization of fur/f by immunofluorescence microscopy showed that its staining pattern largely overlapped with those of several Golgi-associated markers. Treatment of cells with brefeldin A caused the fur/f distribution to collapse around the microtubule organizing center, indicating that furin is concentrated in the trans-Golgi network (TGN). Immunoelectron microscopy showed unequivocally that furin resides in the TGN where it colocalized with TGN38. In agreement with its proposed activity in multiple compartments, antibody uptake studies showed that fur/f cycles between the cell surface and TGN. Furthermore, targeting to the TGN requires sequences in the cytoplasmic tail of the enzyme. Pulse-chase and immunofluorescence analyses demonstrated that proregion removal occurs in the endoplasmic reticulum and that cleavage may be required for exist from this compartment. Finally, we show that proregion removal is necessary but not sufficient for enzyme activation.  相似文献   

20.
In avian species, a glycoprotein homologous to mammalian ZPC is synthesized in the granulosa cells of developing follicles. We have previously reported that the newly synthesized ZPC (proZPC) in granulosa cells is cleaved at a consensus furin cleavage site to generate mature ZPC prior to secretion. In the present study, we examined the effect of the proteolytic cleavage of proZPC on ZPC secretion by using a specific inhibitor of furin endoprotease and site-directed mutagenesis of the furin cleavage site. Western blot analysis demonstrated that the furin inhibitor efficiently blocked both the proteolytic cleavage of proZPC and the subsequent ZPC secretion. A site-directed mutant that possessed a mutated sequence for furin cleavage was not secreted from the cells. The immunocytochemical observations indicated that proZPC produced in the presence of a furin inhibitor or those produced by the site-directed mutant of the furin cleavage site had accumulated in the endoplasmic reticulum. These results indicate that proZPC is proteolytically cleaved at the consensus furin cleavage site with furin-like protease, and the failure of this cleavage results in its accumulation in the endoplasmic reticulum. Therefore, the C-terminal proteolytic processing of proZPC at the consensus furin cleavage site is a prerequisite event for quail ZPC secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号