首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

2.
L. Sun  S. Gu  X. Li  Y. Sun  D. Zheng  K. Yu  C. Ji  R. Tang  Y. Xie  Y. Mao 《Molecular Biology》2006,40(5):724-731
Human protein kinases make up a large superfamily of homologous proteins, which are related by virtue of their kinase domains (also known as catalytic domains). Here, we report the cloning and characterization of a novel human MAST4 (microtubule associated serine/threonine kinase family member 4) gene, which locates on human chromosome 5q13. The MAST4 cDNA is 7587 base pairs in length and encodes a putative protein of 2435 amino acids which contains a serine/threonine kinase domain and a PDZ domain. MAST4 protein has 64, 63, 59, and 39% identical amino acid residues with MAST1, MAST2, MAST3, and MASTL, respectively. RT-PCR analysis revealed a relatively high expression level of MAST4 in most normal human tissues, with the exception of in testis, small intestine, colon, and peripheral blood leukocyte. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 5, pp. 808–815. The text was submitted by the authors in English. The nucleotide sequences reported in this paper have been submitted to GenBank under accession number: AY830839. These two authors contributed equally to this paper.  相似文献   

3.
We have isolated and sequenced a MAP (mitogen-activated protein) kinase-type cDNA from a tobacco (Nicotiana tabacum L.) cell suspension cDNA library by screening with a PCR fragment amplified from the same library with oligonucleotide primers corresponding to two sequences conserved in yeast and animal MAP kinases. The tobacco sequence, ntf3, shows 45–54% identity to various members of the MAP kinase family at the protein level. Northern experiments showed that ntf3 is expressed in all tobacco tissues tested, including pollen isolated at different developmental stages. Southern analysis indicated that, as in other organisms, there is a family of MAP kinase genes in tobacco. In complementary tests, ntf3 could not substitute the yeast MAP kinase genes fus3 and kss1.  相似文献   

4.
The mitogen activated protein (MAP) kinase pathway of eukaryotes is stimulated by many growth factors and is required for the integration of multiple cellular signals. In order to study the function of MAP kinases during plant ovule development we have synthesized a Petunia hybrida ovule-specific cDNA library and screened for MAP protein kinase-related sequences using a DNA probe obtained by PCR. A full-length cDNA clone was identified (PMEK for Petunia hybrida MAP/ERK-related protein kinase) and shown to encode a protein related to the family of MAP/ERK protein kinases. Southern blot analysis showed that PMEK is a member of a small multigene family in P. hybrida. The cDNA codes for a protein (PMEK1) of 44.4 kDa with an overall sequence identity of 44% to the products of the mammalian ERK/MAP kinase gene, and the budding yeast KSS1 and FUS3 genes. PMEK1 displays 96 and 80% identity respectively with the tobacco NTF3 and Arabidopsis ATMPK1 kinases, and only 50% to the more distantly related plant MAP kinase MsERK1 from alfalfa. The two phosphorylation sites found in the loop between subdomain VII and VIII in all the other MAP kinases are also present in PMEK1. RNA gel blot and RT-PCR analyses demonstrated that PMEK1 is expressed in vegetative organs and preferentially accumulated in female reproductive organs of P. hybrida. In situ hybridization experiments showed that in the reproductive organs PMEK1 is expressed only in the ovary and not in the stamen.  相似文献   

5.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

6.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termedMMK2. The predicted amino acid sequence ofMMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termedMMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness ofMMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeastMPK1 (SLT2) kinase byMMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.  相似文献   

7.
8.
9.
Guanylate kinase is an essential enzyme in the nucleotide biosynthetic pathway, catalyzing the reversible transfer of the terminal phospharyl group of ATP to GMP or dGMP. This enzyme has been well studied from several organisms and many structural and functional details have been characterized. Animal GMP kinases have also been implicated in signal transduction pathways. However, the corresponding role by plant derived GMP kinases remains to be elucidated. Full-length cDNA clones encoding enzymatically active guanylate kinases were isolated from cDNA libraries of lily and tobacco. Lily cDNA is predicted to encode a 392-amino acid protein with a molecular mass of 43.1 kDa and carries amino- and carboxy- terminal extensions of the guanylate kinase (GK)-like domain. But tobacco cDNA is predicted to encode a smaller protein of 297-amino acids with a molecular mass of 32.7 kDa. The amino acid residues known to participate in the catalytic activity of functionally characterized GMP kinases, are also conserved in GK domains of LGK-1 and NGK-1. The GK domains of NGK-1, LGK-1 and previously characterized AGK-1 from Arabidopsis exhibit 74–84% identity, whereas their N- and C-terminal domains are more divergent with amino acid conservation in the order of 48-55%. Phylogenetic analysis on the deduced amino acid sequences reveals that NGK-1 and LGK-1 form one distinct subgroup along with AGK-1 and AGK-2 homologues from Arabidopsis. Isolation of GMP kinases from diverse plant species like lily and tobacco adds a new dimension in understanding their role in cell signaling pathways that are associated with plant growth and development.  相似文献   

10.
A family of calcium-responsive protein kinases is abundant in plant cell extracts but has not been identified in animals and fungi. These enzymes have a unique structure consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. In this report, we present the amino acid sequences for eight new Arabidopsis cDNA clones encoding isoforms of this enzyme. Three isoforms were expressed as fusion proteins in Escherichia coli and exhibited calcium-stimulated protein kinase activity. We propose CPK as the gene designation for this family of enzymes and describe a phylogenetic analysis for all known isoforms.  相似文献   

11.
Previous analysis of the MAP kinase homologue from Pisum sativum (PsMAPK) revealed a potential MAP kinase motif homologous to that found in eukaryotic cdc2 kinases. Sequence comparison showed a 47% identity on amino acid sequence basis to the Saccharomyces cerevisiae Hog 1p MAP kinase involved in the osmoregulatory pathway. Under conditions of salt-stress aberrant morphology of a hog1 deletion mutant was completely restored and growth was partially restored by expression of the PsMAPK. This shows that PsMAPK is functionally active as a MAP kinase in S. cerevisiae. Comparison of PsMAPK with other kinases involved in osmosensitivity, showed a high degree of homology and implicates a possible role for PsMAPK in a P. sativum osmosensing signal transduction pathway.  相似文献   

12.
ZmMPK6, a Novel Maize MAP Kinase that Interacts with 14-3-3 Proteins   总被引:2,自引:0,他引:2  
Although an increasing body of evidence indicates that plant MAP kinases are involved in a number of cellular processes, such as cell cycle regulation and cellular response to abiotic stresses, hormones and pathogen attack, very little is known about their biochemical properties and regulation mechanism. In this paper we report on the identification and characterization of a novel member of the MAP kinase family from maize, ZmMPK6. The amino acid sequence reveals a high degree of identity with group D plant MAP kinases. Recombinant ZmMPK6, expressed in Escherichia coli, is an active enzyme able to autophosphorylate. Remarkably, ZmMPK6 interacts in vitro with GF14-6, a maize 14-3-3 protein and the interaction is dependent on autophosphorylation. The interacting domain of ZmMPK6 is on the C-terminus and is comprised between amino acid 337 and amino acid 467. Our results represent the first evidence of an interaction between a plant MAP kinase and a 14-3-3 protein. Possible functional roles of this association in vivo are discussed.  相似文献   

13.
14.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   

15.
While the molecular basis of sporophytic self-incompatibility (SSI) has been investigated extensively in the Brassicaceae, almost nothing is known about the molecular regulation of SSI in other families, such as the Asteraceae. In species of Brassica and in Arabidopsis lyrata, a stigma-specific serine-threonine receptor kinase (SRK) and its cognate ligand, a pollen coating-borne cysteine-rich protein (SCR/SP11), determine the female and male sides of the SSI response, respectively. Here we have used RT-PCR with degenerate primers to conserved regions of SRK to amplify three SRK-like gene fragments expressed in stigmas of Senecio squalidus (Asteraceae). The Senecio S-receptor-like kinase (SSRLK) sequences share ~43% amino acid sequence identity with Brassica SRK3 but higher amino acid sequence identity (~50%) with two Solanum bulbocastanum receptor-like kinase genes of unknown function. Despite expression in stigmas, all three SSRLKs were expressed at varying levels in floral and vegetative tissues. No allelic polymorphism was detected for the three SSRLKs in two S homozygous lines of S. squalidus or three other lines of S. squalidus carrying different S alleles. A full-length cDNA clone was obtained for SSRLK1 and its predicted amino acid sequence revealed significant structural differences to Brassica SRKs, most notably a major N-terminal truncation of 169 amino acids and the presence of just 8 conserved cysteine residues within the putative receptor domain instead of 12. Together, the sequence characteristics and expression characteristics of SSRLKs suggest that they are unlikely to be directly involved in the SSI response of S. squalidus. These findings are discussed in terms of the evolution of the SRK multigene family and the molecular basis of SSI in S. squalidus and the Asteraceae.  相似文献   

16.
Summary The cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a 34 kDa phosphoprotein with serine/threonine protein kinase activity that acts as the key component in regulation of the eukaryotic cell cycle. We used a repressible promoter fused to the cdc2 cDNA to isolate conditionally dominant negative mutants of cdc2. One of these mutants, DL5, is described in this paper. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and confers cell cycle arrest with a typical cdc phenotype. Sequencing of the mutant cdc2 gene revealed a single amino acid substitution in a region highly conserved in cdc2-like proteins. The mutant protein exhibits no protein kinase activity, but is able to bind a component(s) required for an active protein kinase complex and thereby prevents binding of this component(s) to the co-existing wild-type cdc2 protein. We also demonstrate that S. pombe p34cdc2 contains no phosphoserine.  相似文献   

17.
18.
Ye X  Ji C  Huang Q  Cheng C  Tang R  Xu J  Zeng L  Dai J  Wu Q  Gu S  Xie Y  Mao Y 《Molecular biology reports》2003,30(2):91-96
Protein kinases (PKs) represent a well studied but most diverse protein superfamily. The covalent, reversible linkage of phosphate to serine, threonine, and tyrosine residues of substrate proteins by protein kinases is probably ubiquitous cellular mechanism for regulation of physiological processes. It is known to us that most signaling pathways impinge at some point on protein kinases. Here we report a human putative receptor protein kinase cDNA STYK1. The STYK1 cDNA is 2749 base pairs in length and contains an open reading frame encoding 422 amino acids. The STYK1 gene is mapped to human chromosome 12p13 and 11 exons were found. RT-PCR showed that STYK1 is widely expressed in human tissues.  相似文献   

19.
Summary We have determined the nucleotide sequence of both genomic and complementary DNA (cDNA) for the gene encoding the glycolytic enzyme phosphoglycerate kinase from the ciliated protozoan Tetrahymena thermophila. The amino acid sequence for the enzyme has also been derived from the cDNA sequence. The gene contains an open reading frame of 1260 nucleotides encoding 420 amino acids. Coding sequence in genomic DNA is interrupted by two introns at positions corresponding to introns 3 and 4 in mammalian phosphoglycerate kinase genes. The derived amino acid sequence was used to prepare a phylogeny by aligning the Tetrahymena sequence with 25 other phosphoglycerate kinase amino acid sequences. The Tetrahymena sequence is a typical eukaryotic sequence. There is recognizable and clear homology across species that cover nearly the complete range of life forms. The phylogenetic reconstruction of these sequences generally supports the conclusions that have been reached using rRNA sequences.Offprint requests to: R.E. Pearlman  相似文献   

20.
原增艳  宋小锋  朱畇昊 《广西植物》2020,40(12):1816-1823
钙依赖型蛋白激酶(calcium-dependent protein kinases, CDPKs)是高等植物细胞中重要的钙离子信号受体,在植物抵御逆境胁迫过程中发挥着重要作用。该研究以地黄为材料,设计特异引物,克隆地黄RgCDPK基因全长序列,并使用在线软件进行生物信息学分析,采用荧光定量PCR技术进行组织特异性分析。结果表明:(1)克隆得到的地黄CDPK基因长度为1 770 bp,编码589个氨基酸;(2)多序列比对和结构分析显示,该蛋白含有钙依赖蛋白激酶典型结构域丝氨酸/苏氨酸蛋白激酶区及EF-手性区。系统进化分析表明其与拟南芥 AtCDPK28 的同源关系最近,因此命名为RgCDPK(Genbank登录号为MT024235);(3)组织特异性分析得出RgCDPK在地黄叶中表达量最高。该研究成功克隆出地黄CDPK基因,且发现该基因在不同组织中的表达存在差异,为以后深入研究CDPK在地黄连作障碍等生物及非生物胁迫中的分子机制提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号