首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramural neurons in the urinary bladder of the guinea-pig   总被引:3,自引:0,他引:3  
Summary The urinary bladder of adult female guinea-pigs was stained histochemically to detect the presence of intramural ganglion neurons. Counts on wholemount preparations of entire bladders revealed the presence of 2000–2500 neurons per bladder, either as individual nerve cells or, more often, as ganglia containing up to 40 neurons. Both ganglia and single neurons lie along nerve trunks and are interconnected to form a plexus. Ganglia occur in every part of the bladder; they are more numerous on the dorsal than on the ventral wall, and they are especially abundant in an area within a radius of 800 m from the point of entry into the bladder wall of ureters and urinary arteries. The ganglia are located inside the muscle coat and close to muscle bundles; they usually lie nearer the mucosa than the serosa. Ultrastructurally, each ganglion is surrounded by a capsule; in addition to neurons and glial cells, the ganglia contain capillaries, collagen fibrils and fibroblasts; ganglion neurons are individually wrapped by glial cells and are separated from one another by connective tissue.  相似文献   

2.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

3.
P Mestres  M Diener  W Rummel 《Acta anatomica》1992,143(4):268-274
The mucosal plexus of the rat colon descendens is constituted of a network of nerves that, in contrast to most other segments of the digestive tract, contains also ganglia. The ganglia, consisting of neurons and glial cells, are located in the basal part of the lamina propria at distances between 100 and 1,200 microns. They are not vascularized. The neurons in these ganglia were characterized by means of: (1) the histochemical demonstration of acetylcholinesterase (AChE) activity, (2) the immunocytochemical identification of neurofilament proteins (NFP; 200 kD) and (3) their ultrastructure. The glial cells, which were AChE negative, could be distinguished from the neurons by differences in size and chromatin pattern. All neurons of the mucosal plexus reveal AChE activity in the perikaryon, but only parts of the axons are AChE positive. NFP-like immunoreactivity was detected in the perikarya but only in a minor part of the axons. These findings confirm previous light-microscopical observations and add new evidence for the existence of neurons (ganglia) in the mucosal plexus of the rat colon.  相似文献   

4.
Summary The dilatator muscle cells form short projections into the stroma of the iris. Close to these projections run several nerve bundles. The unmyelinated axons often show enlargements (varicosities) containing mitochondria and vesicles. Several of the varicosities are partly denuded of the Schwann cell and are covered only by a basement membrane. The varicosities are then separated from the muscle cells only by basement membranes and a 0.1–1 stromal space. The ultrastructure of the iris dilatator muscle thus also fits the view that the autonomic ground plexus with its varicosities forms the real innervation apparatus.The smallest space between axon and muscle has a width of 700–900 Å and is cemented with basement membrane material. It is suggested that the main function of these contact sites is not to transmit a nerve impulse but to anchor the nerves to their effector organ.This study has been supported by grants from the Swedish State Research Council (U 267) and the United States Public Health Service (N B 2854-04).  相似文献   

5.
6.
The purpose of this study was the reinvestigation of the intrinsic innervation of human gall bladder with an immunohistochemical technique named peroxidase anti-peroxidase (PAP). The antigen demonstrated was the S100 protein normally present in the surface of glial cells, Schwann cells and satellite cells in ganglia. The tissues used were taken from 20 human gall bladders, fixed after surgery. This technique is not specific to demonstrate adrenergic or cholinergic innervation but it reveals just myelinated fibers. The current study was undertaken in order to study the organization and the function of plexus of nerves and ganglia present in the wall of the gall bladder. The neck of the gall bladder was the region in which the higher number of nerve cells and nervous fibers was present. The technique used has demonstrated ganglionated plexus and nerves in submucosal layer, fibromuscular and adventitial layer according to the enteric nervous system. All ganglia are postganglionic stations related with preganglionic cholinergic fibers. These results confirm that the intramural ganglia of the gall bladder are analogous to those of the enteric nervous system according to their common origin.  相似文献   

7.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

8.
External muscle and myenteric plexus from the small intestine of adult guinea-pigs were maintained in vitro for 3 or 6 days. Myenteric neurons and smooth muscle cells from such organotypic cultures were examined at the electron-microscopic level. An intact basal lamina was found around the myenteric ganglia and internodal strands. Neuronal membranes, nuclei and subcellular organelles appeared to be well preserved in cultured tissues and ribosomes were abundant. Dogiel type-II neurons were distinguishable by their elongated electron-dense mitochondria, numerous lysosomes and high densities of ribosomes. Vesiculated nerve profiles contained combinations of differently shaped vesicles. Synaptic membrane specializations were found between vesiculated nerve profiles and nerve processes and cell bodies. The majority of nerve fibres were well preserved in the myenteric ganglia, in internodal strands and in bundles running between circular muscle cells. No detectable changes were found in the ultrastructure of the somata and processes of glial cells. Longitudinal and circular muscle cells from cultured tissue had clearly defined membranes with some close associations with neighbouring muscle cells. Caveolae occurred in rows that ran parallel to the long axis of the muscle cells. These results indicate that the ultrastructural features of enteric neurons and smooth muscle of the guinea-pig small intestine are well preserved in organotypic culture.  相似文献   

9.
The coelomic lining of the water-vascular canal in a suckered tube foot from the sea cucumber, Parastichopus californicus, is a pseudostratified myoepithelium consisting of flagellated adluminal cells and myofilament-bearing retractor cells. The bodies of adluminal cells flank the water-vascular canal and send basal processes between the underlying retractor cells to confront the podial connective tissue. Retractor cells have a contractile apparatus of unregistered thick and thin myofilaments. The contractile apparatus is confined to the medullary sarcoplasm and oriented parallel to the primary axis of a tube foot. The bodies and processes of retractor cells intermingle with the basal processes of adluminal cells at the basal lamina of the coelomic lining. A ganglionated nerve plexus in the podial connective tissue approximates the basal lamina. Neuronal connectives link the ganglia to one another and to the nerve plexus in deep sectors of the podial epidermis. External laminae enveloping the ganglia and connectives in the podial connective tissue are continuous with the basal lamina of the epidermis. The adventitial nerve plexus, since it merges with the epidermal nerve plexus, is a component of the ectoneural division of the echinoderm nervous system.  相似文献   

10.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

11.
Summary We have studied the layers of the muscular coat of the guinea-pig small intestine after enzymatic and chemical removal of extracellular connective tissue. The cells of the longitudinal muscle layer are wider, have rougher surfaces, more finger-like processes and more complex terminations, but fewer intercellular junctions than cells in the circular muscle layer. A special layer of wide, flat cells with a dense innervation exists at the inner margin of the circular muscle layer, facing the submucosa. The ganglia of the myenteric and submucosal plexuses are covered by a smooth basal lamina, a delicate feltwork of collagen fibrils, and innumerable connective tissue cells. The neuronal and glial cell processes at the surface of ganglia form an interlocking mosaic, which is loosely packed in newborn and young animals, but becomes tightly packed in adults. The arrangement of glial cells becomes progressively looser along finer nerve bundles. Single varicose nerve fibres are rarely exposed, but multiaxonal bundles are common. Fibroblast-like cells of characteristic shape and orientation are found in the serosa; around nerve ganglia; in the intermuscular connective tissue layer and in the circular muscle, where they bridge nerve bundles and muscle cells; at the submucosal face of the special, flattened inner circular muscle layer; and in the submucosa. Some of these fibroblast like cells correspond to interstitial cells of Cajal. Other structures readily visualized by scanning electron microscopy are blood and lymphatic vessels and their periendothelial cells. The relationship of cellular elements to connective tissue was studied with three different preparative procedures: (1) freeze-cracked specimens of intact, undigested intestine; (2) stretch preparations of longitudinal muscle with adhering myenteric plexus; (3) sheets of submucosal collagen bundles from which all cellular elements had been removed by prolonged detergent extraction.  相似文献   

12.
Nerve fibers and varicosities in the pelvic paracervical ganglia (PG) are immunoreactive for the neuropeptides calcitonin gene-related peptide, galanin, and the tachykinins substance P and neurokinin A. Many of these fibers and varicosities are capsaicin-sensitive, originate in dorsal root ganglia and, thus, are considered to be primary afferent fibers. Numerous immunoreactive varicosities are pericellular to principal neurons in the PG. The present study examines the ultrastructure of calcitonin gene-related peptide-, galanin-, substance P-, and neurokinin A-immunoreactive nerve fibers and varicosities in the ganglia to determine their relationships to principal neurons and their synaptic connectivity. Paracervical ganglia of female rats were processed for light-microscopic immunohistochemistry using antisera against synapsin I, as a nerve terminal marker, and microtubule-associated protein-2 to define soma and dendrites. The rationale for performing this co-immunohistochemical analysis was to reveal the relationship between nerve endings and principal neurons. Synapsin I endings were predominantly axosomatic with fewer being axodendritic. Other ganglia were processed for electron-microscopic immunohistochemistry using both standard immunogold and peroxidase-anti-peroxidase procedures. Unmyelinated fibers and varicosities immunoreactive for calcitonin gene-related peptide, galanin, and the tachykinins were routinely observed in the interstitium between neuron somas. Numerous immunoreactive axon profiles were present in small groups that were ensheathed by Schwann cells. Immunoreactive fibers and varicosities were also observed within the satellite-cell sheath of the neuron soma and often intimately associated with the membrane of the soma, somal protrusions, or with the proximal part of a dendrite. Membrane specializations, indicative of synaptic contacts, between the fibers and the principal neurons were observed. It is suggested that these peptide-immunoreactive sensory fibers and varicosities are involved in regulation of activity in the PG.  相似文献   

13.
两种软体动物神经系统一氧化氮合酶的组织化学定位   总被引:8,自引:0,他引:8  
运用一氧化氮合酶(NOS)组织化学方法研究了软体动物门双壳纲种类中国蛤蜊和腹足纲种类嫁Qi神经系统中NOS阳性细胞以及阳性纤维的分布。结果表明:在蛤蜊脑神经节腹内侧,每侧约有10-15个细胞呈强NOS阳性反应,其突起也呈强阳性反应,并经脑足神经节进入足神经节的中央纤维网中;足神经节内只有2个细胞呈弱阳性反应,其突起较短,进入足神经节中央纤维网中,但足神经节中,来自脑神经节阳性细胞和外周神经系统的纤维大多呈NOS阳性反应;脏神经节的前内侧部和后外侧部各有一个阳性细胞团,其突起分别进入后闭壳肌水管后外套膜神经和脑脏神经索。脏神经节背侧小细胞层以及联系两侧小细胞层的纤维也呈NOS阳性反应。嫁Qi中枢神经系统各神经节中没有发现NOS阳性胞体存在;脑神经节、足神经节、侧神经节以及脑—侧、脑—足、侧—脏连索中均有反应程度不同的NOS阳性纤维,这些纤维均源于外周神经。与已研究的软体动物比较,嫁Qi和前鳃亚纲其它种类一样,神经系统中NO作为信息分子可能主要存在于感觉神经。而中国蛤蜊的神经系统中一氧化氮作为信息分子则可能参与更广泛的神经调节过程。  相似文献   

14.
Scanning electron microscopy of whole-mount preparations of the tela submucosa in the porcine small intestine, examined after trypsin digestion, fixation and HCl hydrolysis, visualized a clear differentiation of the submucosal plexuses, i.e., the plexus submucosus internus (Meissner) and the plexus submucosus externus (Schabadasch). The distinctive features refer to the topography, number, size and shape of the ganglia and the number and diameter of the nerve strands. The plexus of Meissner is closely apposed to the external surface of the lamina muscularis mucosae by the enveloping connective tissue and by connecting strands penetrating the lamina muscularis mucosae. Three distinctive subdivisions of connecting strands can be identified. Since the glial cells covering the ganglia and connecting strands have been preserved, neither individual neuronal cells nor axons can be observed.  相似文献   

15.
Summary The neuropeptide- and catecholamine-synthesizing enzyme content and ultrastructure of the peri-ureteric ganglia of guinea-pigs were investigated. Small numbers of neuronal perikarya were present at frequent intervals forming ganglia close to, and along the entire length of, the ureter. Each of these ganglia was surrounded by a connective tissue capsule, and was located in the peri-ureteric connective tissues. Within each ganglion were typical nerve terminals and varicosities containing small, clear synaptic vesicles or synaptic vesicles with an electron-dense core, or a mixture of the two. In the ganglia, immunoreactivity to tyrosine hydroxylase, dopamine hydroxylase, neuropeptide tyrosine, or vasoactive intestinal peptide was present in neuronal perikarya; immunoreactivity to substance P or leucine enkephalin was present in nerve terminals and varicosities. Electron-microscopic immunogold studies indicated that there was no coexistence of substance P and enkephalin in the nerve terminals, unlike related ganglia in the pelvis of guinea-pigs.  相似文献   

16.
Chick embryo spinal ganglia, peripheral nerves, and connective tissue usually associated with ganglia were cultured separately using several combinations of media and substrata. Melanocytes appear in cultures of both ganglia and peripheral nerves. The only cell type common to both the ganglion and peripheral nerve that could account for the observed pigment cells was the population of small cells with intensely staining nuclei that normally associates closely with nerve cell bodies and fibers. These cells could be distinguished morphologically from fibroblastic cells, which originated in the connective tissue capsule and did not undergo melanogenesis. We conclude that these small cells are supportive (Schwann, satellite, and perineurial) cell precursors and are one source of melanocytes in cultured peripheral nervous tissue.  相似文献   

17.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

18.
Summary The innervation of the anococcygeus muscle of the rat was investigated with regard to the histochemical features of nerve fibers within the muscle and to the location of the postganglionic autonomic neurons which are the source of these fibers. Acetylcholinesterase-positive fibers and catecholaminergic fibers are abundant in the anococcygeus as well as the related retractor penis muscle. Neuronal somata, either between muscle bundles of the anococcygeus or in the connective tissue sheath, are also acetylcholinesterase-positive. Nerve fibers and a minority of the ganglion cells in the anococcygeus and retractor penis muscles are immunoreactive for vasoactive intestinal polypeptide. Injection of the retrogradely transported dye Fluorogold into the anococcygeus muscle filled neurons in the abdominopelvic sympathetic chain, pelvic plexus and a small number of neurons in the inferior mesenteric ganglion. In the pelvic plexus, some neurons were located in the major pelvic ganglion but most were found along the main penile nerve and its branches to the anococcygeus muscle. Immunocytochemistry of these identified neurons indicates that about one half of them are positive for vasoactive intestinal polypeptice. These results raise the possibility that both acetylcholine and vasoactive intestinal polypeptide are important neurotransmitters in autonomic nerves to the anococcygeus muscle.  相似文献   

19.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

20.
The aluminium-formaldehyde (ALFA) histofluorescence method reveals an extensive plexus of brilliant greenish monoaminergic elements in the glandular zones of the Mytilus foot, while only scanty nerve fibres are acetylcholinesterase-positive. By electron microscopy, bundles of nerve fibres can be seen i) in close connection with the intrinsic musculature located in the connective septa among the glands, and ii) near the cell bodies and necks of all the byssus glands. The nerve fibres show varicosities containing three types of vesicles: small clear (50-60 nm), small granular (80-90 nm), and large granular (160-200 nm). The regions of close apposition between nerve terminals and muscle or gland cells generally do not show typical pre- or postsynaptic specializations. Along the pedal groove, mainly in the proximal two thirds of the foot, peripheral bipolar neurons can be detected, both by fluorescence and electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号