首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.  相似文献   

2.
3.
Bacteriophage infection is initiated by binding of the virion to a specific receptor located on the host surface. The genome is then released from the capsid and delivered to the host cytoplasm. Our knowledge of these early steps of infection has recently improved. The three-dimensional structure of numerous receptor binding proteins of tailed phages has been solved. Cryo-electron tomography has allowed characterization of the phage-host interactions in a cellular context and at nanometric resolution. The localization and motions of fluorescently labelled phages, receptors and viral DNA were monitored on individual bacteria. Altogether these approaches have revealed the intricacy of these early events and emphasize the link between infection and microbial architecture.  相似文献   

4.
5.
Interaction of hepatitis C virus proteins with host cell membranes and lipids   总被引:15,自引:0,他引:15  
For replication, viruses depend on specific components and energy supplies from the host cell. The main steps in the lifecycle of positive-strand RNA viruses depend on cellular membranes. Interest is increasing in studying the interactions between host cell membranes and viral proteins to understand how such viruses replicate their genome and produce infectious particles. These studies should also lead to a better knowledge of the different mechanisms underlying membrane-protein associations. The various molecular interactions of hepatitis C virus proteins with the membranes and lipids of the infected cell highlight how a virus can exploit the diversity of interactions that occur between proteins and membranes or lipid structures.  相似文献   

6.
7.
A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools.  相似文献   

8.
ABSTRACT: Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (-) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (-) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection.  相似文献   

9.
The process by which Ectocarpus fasciculatus virus type 1 (EfasV‐1) infects zoospores of its brown algal host was studied by electron microscopy. Upon virus attachment to the target cell, the integral membrane component of the viral capsid fuses with the host plasma membrane, and the 140‐nm viral DNA‐protein core enters the cytosol. Within 5 min after infection, particles resembling viral cores appeared in the nucleus. The entry mechanism of EfasV‐1 into the host nucleus remains enigmatic.  相似文献   

10.
11.
12.
13.
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.  相似文献   

14.
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host.  相似文献   

15.
16.
During the last two decades, the profusion of HIV research due to the urge to identify new therapeutic targets has led to a wealth of information on the retroviral replication cycle. However, while the late stages of the retrovirus life cycle, consisting of virus replication and egress, have been partly unraveled, the early steps remain largely enigmatic. These early steps consist of a long and perilous journey from the cell surface to the nucleus where the proviral DNA integrates into the host genome. Retroviral particles must bind specifically to their target cells, cross the plasma membrane, reverse-transcribe their RNA genome, while uncoating the cores, find their way to the nuclear membrane and penetrate into the nucleus to finally dock and integrate into the cellular genome. Along this journey, retroviruses hijack the cellular machinery, while at the same time counteracting cellular defenses. Elucidating these mechanisms and identifying which cellular factors are exploited by the retroviruses and which hinder their life cycle, will certainly lead to the discovery of new ways to inhibit viral replication and to improve retroviral vectors for gene transfer. Finally, as proven by many examples in the past, progresses in retrovirology will undoubtedly also provide some priceless insights into cell biology.  相似文献   

17.
18.
Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5.  相似文献   

19.
Viral capsids are robust structures designed to protect the genome from environmental insults and deliver it to the host cell. The developmental pathway for complex double-stranded DNA viruses is generally conserved in the prokaryotic and eukaryotic groups and includes a genome packaging step where viral DNA is inserted into a pre-formed procapsid shell. The procapsids self-assemble from monomeric precursors to afford a mature icosahedron that contains a single “portal” structure at a unique vertex; the portal serves as the hole through which DNA enters the procapsid during particle assembly and exits during infection. Bacteriophage λ has served as an ideal model system to study the development of the large double-stranded DNA viruses. Within this context, the λ procapsid assembly pathway has been reported to be uniquely complex involving protein cross-linking and proteolytic maturation events. In this work, we identify and characterize the protease responsible for λ procapsid maturation and present a structural model for a procapsid-bound protease dimer. The procapsid protease possesses autoproteolytic activity, it is required for degradation of the internal “scaffold” protein required for procapsid self-assembly, and it is responsible for proteolysis of the portal complex. Our data demonstrate that these proteolytic maturation events are not required for procapsid assembly or for DNA packaging into the structure, but that proteolysis is essential to late steps in particle assembly and/or in subsequent infection of a host cell. The data suggest that the λ-like proteases and the herpesvirus-like proteases define two distinct viral protease folds that exhibit little sequence or structural homology but that provide identical functions in virus development. The data further indicate that procapsid assembly and maturation are strongly conserved in the prokaryotic and eukaryotic virus groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号