首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphologic studies have shown that the classic endocytosis tracer horseradish peroxidase (HRP) is actively internalized by vesicular transport in the carp intestine, suggesting the existence of specific binding sites in the apical membrane of enterocytes. The aim of the present study was to develop an in vitro binding assay using isolated carp intestinal brush-border membranes (BBM) to demonstrate and characterize these specific HRP binding sites. The results obtained show that HRP binding to BBM exhibits a saturable mode and high affinity (K(d) = 22 nM). In addition, HRP binding sites are highly enriched in BBM compared to basolateral membranes. On the other hand, HRP interaction with these sites is apparently of an ionic character because binding increased concomitantly with decreasing NaCl concentrations in the assay, reaching a maximum in the absence of NaCl. Other proteins that are also internalized in carp intestine did not significantly inhibit HRP binding to BBM. A lectin-type of interaction was discarded because neither manan nor ovoalbumin inhibited HRP binding. Proteinase K treatment of BBM reduced HRP binding by 70%, suggesting a proteic nature for this binding site. Finally, ligand blotting assays showed that HRP binds specifically to a 15.3-kDa protein. Taken together, these results are consistent with the existence of a functional receptor for HRP in carp intestinal mucosa that could mediate its internalization.  相似文献   

2.
The capacity of cholera toxin (CT) and type I heat-labile enterotoxin produced by Escherichia coli isolated from human intestine (LTh) to interact with glycoconjugates bearing ABH blood group determinants from rabbit intestinal brush border membranes (BBM) was studied. On the basis of the type of intestinal compounds related to the human ABH blood group antigens, rabbits were classified as AB or H. Toxin binding to the intestinal glycolipids and glycoproteins depends on the blood group determinant borne by the glycoconjugate and on the analyzed toxin. LTh was capable of interacting preferentially with several blood group A- and B-active BBM glycolipids compared to those isolated from animals lacking these antigens (H rabbits). Also, LTh preferably bound to several BBM glycoproteins from AB rabbit intestines compared to those from H ones. One of these glycoproteins, the sucrase-isomaltase complex (EC 3.2.1.48-10) isolated from AB and H rabbits showed the same differential LTh binding. Conversely, CT practically did not recognize either blood group A-, B-, or H-active glycolipids and glycoproteins. These results may be relevant for carrying out in vivo experiments in rabbits in order to disclose the role of ABH active-glycoconjugates in the secretory response induced by LTh in rabbit intestine.  相似文献   

3.
Dietary proteins are recognized by the gastrointestinal tract to display physiological functions, however, the sensory mechanism of the intestinal mucosa is not known. We examined binding properties between the rat small intestinal brush-border membrane (BBM) and proteins by using a surface plasmon resonance biosensor. BBM and solubilized BBM prepared from the rat jejunum bound to casein immobilized on the sensor surface, but not to bovine serum albumin. The ileal BBM showed less binding to casein than the jejunal BBM. Solubilized BBM binding to immobilized alpha-casein was slightly inhibited by aminopeptidase inhibitors, but still more inhibited by addition of casein with the inhibitors. Guanidinated casein inhibited the solubilized BBM binding to alpha-casein more strongly than casein (casein sodium and alpha-casein) inhibited. Trypsinization of solubilized BBM abolished its binding activity to alpha-casein. These results indicate that some membrane protein, but not aminopeptidases, contained in BBM interacts with dietary proteins, and that guanidinated casein has a higher affinity for BBM than intact casein. These binding intensities for proteins were closely correlated to physiological responsiveness, and are possibly involved in a sensory system for dietary protein in the intestine.  相似文献   

4.
In a previous study we had demonstrated that a 15-kDa protein present in carp intestinal brush-border membrane vesicles (BBMV) was able to bind the endocytosis tracer horseradish peroxidase (HRP) with high specificity. Here we show that this protein corresponds to a peripheral membrane protein, identified by partial amino acid sequence analysis as the intestinal fatty acid-binding protein (I-FABP), a member of the small cytosolic fatty acid binding protein family (FABPs). The presence of I-FABP and its HRP-binding activity was demonstrated both in the cytosolic and membrane-associated fractions of intestinal mucosa by Western and ligand blot analyses, respectively. Also, both fractions displayed significant capacity to bind [(3)H]palmitic acid, a known ligand for I-FABP. Immunohistochemical analysis showed that I-FABP localizes both in the cytosol and in the brush-border membranes of epithelial cells. Taken together the unusual extra-cellular localization of I-FABP as well as its ability to interact with HRP suggests a novel function for this protein in the intestinal mucosa.  相似文献   

5.
In order to localize a rich source of basic FGF receptor, we examined the distribution of basic FGF binding sites in brain, stomach, lung, spleen, kidney, liver and intestine membrane preparations from adult guinea pig. Comparative binding studies using iodinated basic FGF showed that a specific binding was detected in all the membrane preparations tested. Scatchard plots from iodinated basic FGF competition experiment with native basic FGF in various membrane preparations, suggested the presence of one class of binding sites in some tissues such as liver, kidney, spleen, lung, stomach, and intestine with an apparent dissociation constant (appKD) value ranging from 4 to 7.5 nM and the existence of a second class of higher affinity sites in brain membranes with appKD value of 15 pM. Characterization of these basic FGF high affinity interaction sites was performed using a cross-linking reagent. These results show for the first time that specific interaction sites for basic FGF are widely distributed, suggesting that this growth factor might play a role in the physiological functions of a number of adult organs.  相似文献   

6.
The co-transport of sodium and glucose is the first step for intestinal glucose absorption. Dietary glucose and sodium chloride (NaCl) may facilitate this physiological process in common carp (Cyprinus carpio L.). To test this hypothesis, we first investigated the feeding rhythm of intestinal glucose absorption. Carps were fed to satiety once a day (09:00 a.m.) for 1 month. Intestinal samples were collected at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00. Result showed that food intake greatly enhanced sodium/glucose cotransporter 1 (SGLT1) and glucose transporter type 2 (GLUT2) expressions, and improved glucose absorption, with highest levels at 09:00 a.m.. Then we designed iso-nitrogenous and iso-energetic diets with graded levels of glucose (10%, 20%, 30%, 40% and 50%) and NaCl (0%, 1%, 3% and 5%), and submitted to feeding trial for 10 weeks. The expressions of SGLT1 and GLUT2, brush border membrane vesicles (BBMVs) glucose transport and intestinal villus height were determined after the feeding trial. Increasing levels of dietary glucose and NaCl up-regulated mRNA and protein levels of SGLT1 and GLUT2, enhanced BBMVs glucose transport in the proximal, mid and distal intestine. As for histological adaptive response, however, high-glucose diet prolonged while high-NaCl diet shrank intestinal villus height. Furthermore, we also found that higher mRNA levels of SGLT1 and GLUT2, higher glucose transport capacity of BBMVs, and higher intestinal villus were detected in the proximal and mid intestine, compared to the distal part. Taken together, our study indicated that intestinal glucose absorption in carp was primarily occurred in the proximal and mid intestine, and increasing levels of dietary glucose and NaCl enhanced intestinal glucose absorption in carp.  相似文献   

7.
In the mammalian small intestine, coupled NaCl absorption occurs via the dual operation of Na/H and Cl/HCO(3) exchange on the villus cell brush border membrane (BBM). Although constitutive nitric oxide (cNO) has been demonstrated to alter gastrointestinal tract functions, how cNO may specifically alter these two transporters to regulate coupled NaCl absorption is unknown. In villus cells, inhibition of cNO synthase (cNOS) with l-N(G)-nitroarginine methylester (l-NAME) stimulated Na/H exchange whereas Cl/HCO(3) exchange was unaffected. In villus cell BBM vesicles (BBMV) prepared from rabbits treated with l-NAME, Na/H exchange was also stimulated. d-NAME, an inactive analog of l-NAME, and N(6)-(1-imonoethyl)-l-lysine dihydrochloride, a more selective inhibitor of inducible NO synthase, did not affect Na/H exchange. Kinetic studies demonstrated that the mechanism of stimulation is secondary to an increase in the maximal rate of uptake of Na, without an alteration in the affinity of the transporter for Na. Northern blot studies demonstrated an increase in the message for the BBM Na/H exchanger NHE3, and Western blot studies showed that the immunoreactive protein levels of NHE3 was increased when cNOS was inhibited. Thus these results indicate that cNO under nominal physiological states most likely maintains an inhibitory tone on small intestinal coupled NaCl absorption by specifically inhibiting BBM Na/H expression.  相似文献   

8.
Temperature is known to influence xenobiotic retention in fish. The effect of acute and acclimatory temperature change upon Rhodamine 123 (Rho123) permeability through an in vitro catfish multi-segment (3) everted sac intestinal wall model was examined in a 9 cell matrix of acclimation and assay temperatures (10, 20 and 30 degrees C). Changes in Rho123 permeability were examined in context with membrane fluidity, xenobiotic solubility and intestinal morphology. When assayed at the acclimation temperature greater Rho123 permeability was noted at warmer acclimation temperatures for the proximal and middle intestinal segments, while the distal segment exhibited little change and apparent compensation across temperatures. Rho123 permeability was increased as assay temperatures were elevated above the acclimation temperature for most comparisons. Cold acclimation significantly increased total intestinal length (43.2%) and proximal intestine weights while total body weights did not differ. Brush border membranes (BBM) increased fluidity with increased assay temperatures, however, composite anisotropy lines were not significantly different between acclimation treatments. In an additive manner, the membrane probe DPH exhibited increased solubility in BBM with increases in acclimation and assay temperatures. Compositely, these results suggest that acclimation and acute temperature change may differentially influence xenobiotic permeability among intestinal segments with interacting mechanisms.  相似文献   

9.
Uptake of cholesterol by the intestinal absorptive epithelium can be selectively blocked by specific small molecules, like the sterol glycoside, L-166,143. Furthermore, (3)H-labeled L-166,143 administered orally to hamsters binds specifically to the intestinal mucosa, suggesting the existence of a cholesterol transporter. Using autoradiography, the binding site of (3)H-L-166,143 in the hamster small intestine was localized to the very apical aspect of the absorptive epithelial cells. Label was competed by non-radioactive L-166,143 and two structurally distinct cholesterol absorption inhibitors, suggesting a common site of action for these compounds. L-166,143 blocked uptake of (3)H-cholesterol into enterocytes in vivo, as demonstrated by autoradiography, suggesting that it inhibits a very early step of cholesterol absorption, incorporation into the brush border membrane. This conclusion was confirmed by studies in which intestinal brush borders were isolated from hamsters dosed with (3)H-cholesterol in the presence or absence of L-166,143. Uptake of (3)H-cholesterol into the membranes was substantially inhibited by the compound. In contrast, an inhibitor of acyl CoA:cholesterol acyltransferase, did not affect uptake of (3)H-cholesterol into the brush border membranes. These results strongly support the existence of a specific transporter that facilitates the movement of cholesterol from bile acid micelles into the brush border membranes of enterocytes.  相似文献   

10.
Fc receptors on the luminal membranes of intestinal epithelial cells in the neonatal rat mediate the vesicular transfer of functionally intact IgG from the intestinal lumen to the circulation. In addition, there is a low level of nonselective protein uptake, but in this case transfer does not occur. To determine whether a specialized class of endocytic vesicles could account for the selective transfer of IgG, mixtures of IgG conjugated to ferritin (IgG-Ft) and unconjugated horseradish peroxidase (HRP) were injected together into the proximal intestine of 10-d-old rats, and the cellular distribution of these two different tracers was determined by electron microscopy. Virtually all apical endocytic vesicles contained both tracers, indicating simultaneous uptake of both proteins within the same vesicle. However, only IgG-Ft bound to the apical plasma membrane, appeared within coated vesicles at the lateral cell surface, and was released from cells. HRP did not bind to the luminal membrane and was not transferred across cells but was confined to apical lysosomes as identified by acid phosphatase and aryl sulfatase activities. To test the possibility that the binding of IgG to its receptor stimulated endocytosis, HRP was used as a fluid volume tracer, and the amount of HRP taken up by cells in the presence and absence of IgG was measured morphologically and biochemically. The results demonstrate that endocytosis in these cells is constitutive and occurs at the same level in the absence of IgG. The evidence presented indicates that the principal selective mechanism for IgG transfer is the binding of IgG to its receptor during endocytosis. Continued binding to vesicle membranes appears to be required for successful transfer because unbound proteins are removed from the transport pathway before exocytosis. These results favor the proposal that IgG is transferred across cells as an IgG-receptor complex.  相似文献   

11.
Phosphate uptake by brush-border membrane (BBM) vesicles prepared from hypophosphatemic mice (Hyp) is reduced by half relative to BBM vesicles from normal mice. To investigate this abnormality, we studied the protein composition of BBM, their capacity to bind inorganic phosphate, and their protein kinase activity with and without the addition of exogenous cAMP, in normal and Hyp mice. Gradient polyacrylamide gel electrophoresis of BBM proteins showed 27 bands which were identical in normal and Hyp mice. Incubation of the membranes with ortho[32P]phosphate at 0 degrees C revealed a phosphate binding protein with an apparent molecular weight (Mr) of 79000, which has been previously identified in rats as the monomer of alkaline phosphatase. In normal mice, the Scatchard plot of phosphate binding was not linear, suggesting heterogeneity of the binding sites with two major components. At high substrate concentrations, the affinity (K) was 1.42 mM and maximal binding (Bmax) was 83 pmol/mg protein. At low substrate concentrations, these values were 0.07 mM and 10.9 pmol/mg, respectively. In Hyp mice BBM, only one binding system was found with K and Bmax values of 0.38 mM and 53.8 pmol/mg. Incubation of the membranes with 25 microM[gamma-32P]ATP resulted in the phosphorylation of 11 proteins. The major band (Mr: 79000) corresponded to the inorganic phosphate binding protein, i.e., to the alkaline-phosphatase monomer. The 11 proteins showed maximal phosphorylation at pH 10. The protein of 79000 Mr showed a second peak of phosphorylation at pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The immature small intestine of neonatal mammals is permeable to gamma globulins as a source of passive immunity. Allegedly, macromolecular absorption ceases when the epithelial cell membrane matures. However, some evidence exists that adult animals retain a limited capacity to transport antigenic and biologically active quantities of large molecules. In this study, the mechanism of absorption of the tracer protein, horseradish peroxidase (HRP), was tested in neonatal and adult rat gut sacs. Transport into serosal fluid was quantitated by enzymatic assay and monitored morphologically by histochemical techniques. A greater transport of HRP was noted in the adult jejunum compared to adult ileum and neonatal intestine. Morphologically, the uptake mechanism in adult intestine was similar to the endocytosis previously reported in neonatal animals Like other endocytotic processes, HRP uptake in adult rats is an energy-dependent process as determined by metabolic inhibitors and temperature-controlled studies. An understanding of the mechanism whereby macromolecules are bound to intestinal membranes and engulfed by them is necessary before the action of physiologic macromolecules such as enterotoxins can be appreciated.  相似文献   

13.
Escherichia coli heat stable enterotoxin (STa) and the newly identified endogenous ligand guanylin bind to an intestinal receptor and activate membrane bound guanylate cyclase. We compared STa binding and affinity crosslinking of STa receptors in human small intestine to those in the Caco-2 human colon carcinoma cell line. STa had similar kinetics of binding in human intestinal and Caco-2 brush border membranes. In both human intestine and Caco-2 brush border membranes, multiple specifically radiolabeled bands, including a 140–165 kDa band, were identified by affinity crosslinking. However, in human intestine the most prominent autoradiographic species was a 60 kDa band. A 60 kDa protein was also specifically immunoprecipitated from solubilized human brush border membranes using antisera raised against a cloned STa receptor fusion protein. Our observations of multiple crosslinked proteins in human intestine and Caco-2 cells could be explained by the existence of several members of a family of STa receptors and/or the existence of smaller STa binding proteins generated by the protease cleavage of a larger complete STa receptor. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Lipid rafts are glycosphingolipid/cholesterol-enriched membrane microdomains that have been extensively studied during the past two decades. Our aim was to isolate and perform biochemical characterization of lipid rafts from the intestinal brush border membrane (BBM) of Atlantic cod (Gadus morhua) to confirm their existence in a cold-water species and compare their characteristics with lipid rafts from other species in terms of lipid and protein content. To validate the isolation process, we assayed marker enzymes for subcellular organelles, including alkaline phosphatase (AP) and leucine aminopeptidase (LAP), both well-known marker enzymes for BBM and lipid rafts. All biochemical methods showed enrichment of AP in both the BBM and lipid raft fractions. Proteomic studies were performed by MALDI-TOF mass spectrometry using trypsin digested SDS-PAGE samples. Various proteins were associated with the cod intestinal lipid raft preparation such as aminopeptidase-N, prohibitin, and beta-actin. Lipid analysis with 31P NMR and thin layer chromatography on BBMs and lipid rafts samples gave higher content of sphingomyelin than previously reported in the BBM and lower content of phosphatidylcholine. Furthermore, sphingomyelin was highly dominant in the lipid rafts together with cholesterol. The existence of lipid rafts containing previously reported lipid raft characteristics from the cod intestine has, therefore, been confirmed in a ray-finned fish for the first time to the best of our knowledge.  相似文献   

15.
While prostaglandins of the E series are known to affect several small intestinal functions, their cellular mechanisms are poorly understood. The purposes of our study were to determine whether receptors for PGE are present in rat small intestine and to locate and characterize the receptor binding in the subcellular fractions. Small intestinal binding of prostaglandin E1 was significantly higher than that of prostaglandin E2. Highest receptor binding for prostaglandin E1 was found in the plasma membrane fraction of isolated small intestinal enterocytes. Curvilinearity of prostaglandin E1 binding in plasma membranes upon Scatchard analysis indicated two receptor binding sites in rat small intestine. Competitive binding studies demonstrated that receptor binding was highest for prostaglandins of the E series. These studies are the first to demonstrate specific prostaglandin E1 receptors in different subcellular fractions of rat small intestine. We suggest that receptor binding of prostaglandin E may be an important initial step in the mechanism of prostaglandin-E-induced responses in the small intestine.  相似文献   

16.
Previous studies demonstrated that the administration of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) to cholecalciferol-deficient chicks rapidly increases the reactivity and amount of the sulfhydryl (HS-) groups in intestinal brush border membranes (BBM). In the present study, the tissue and hormonal specificity of this effect was investigated. The HS- groups of intestinal and renal BBM were enhanced by vitamin D-3 and/or 1,25(OH)2D3, but no change was noted in isolated intestinal mitochondria and purified intestinal basolateral membranes, cardiac sarcolemma and erythrocyte membranes. Other steroid hormones including estradiol, testosterone, aldosterone, cortisol, dexamethasone and progesterone, yielded a response similar to 1,25(OH)2D3 on BBM HS- groups. Triiodothyronine and retinoic acid also resulted in an increase in intestinal BBM HS- groups. In a kinetic approach, using a specific sulfhydryl fluorescent probe (N-7-dimethylamino-4-coumarin-3-yl-maleimide, DACM), the reactivity of the BBM HS- groups was increased by estrogen and testosterone, as was previously shown for 1,25(OH)2D3. Intestinal BBM proteins, labeled with DACM, were separated by gel electrophoresis. Fluorescence scans of the gel showed two heavily labeled bands, one of 110 kDa, putatively brush border myosin I, and one of 43 kDa, putatively actin. Labeling of the 110 kDa protein was increased by 1,25(OH)2D3 and estradiol. Further studies are required to elucidate the physiological meaning of these hormone-mediated increases in reactivity and amount of the BBM sulfhydryl groups, as well as the nature of the intermediate biochemical reactions involved in this response.  相似文献   

17.
Like most coronaviruses, the coronavirus mouse hepatitis virus (MHV) exhibits strong species specificity, causing natural infection only in mice. MHV-A59 virions use as a receptor a 110- to 120-kDa glycoprotein (MHVR) in the carcinoembryonic antigen (CEA) family of glycoproteins (G. S. Dveksler, M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes, and C. W. Dieffenbach, J. Virol. 65:6881-6891, 1991; and R. K. Williams, G. S. Jiang, and K. V. Holmes, Proc. Natl. Acad. Sci. USA 88:5533-5536, 1991). The role of virus-receptor interactions in determining the species specificity of MHV-A59 was examined by comparing the binding of virus and antireceptor antibodies to cell lines and intestinal brush border membranes (BBM) from many species. Polyclonal antireceptor antiserum (anti-MHVR) raised by immunization of SJL/J mice with BALB/c BBM recognized MHVR specifically in immunoblots of BALB/c BBM but not in BBM from adult SJL/J mice that are resistant to infection with MHV-A59, indicating a major difference in epitopes between MHVR and its SJL/J homolog which does not bind MHV (7). Anti-MHVR bound to plasma membranes of MHV-susceptible murine cell lines but not to membranes of human, cat, dog, monkey, or hamster cell lines. Cell lines from these species were resistant to MHV-A59 infection, and only the murine cell lines tested were susceptible. Pretreatment of murine fibroblasts with anti-MHVR prevented binding of radiolabeled virions to murine cells and prevented virus infection. Solid-phase virus-binding assays and virus overlay protein blot assays showed that MHV-A59 virions bound to MHVR on intestinal BBM from MHV-susceptible mouse strains but not to proteins on intestinal BBM from humans, cats, dogs, pigs, cows, rabbits, rats, cotton rats, or chickens. In immunoblots of BBM from these species, both polyclonal and monoclonal antireceptor antibodies that block MHV-A59 infection of murine cells recognized only the murine CEA-related glycoprotein and not homologous CEA-related glycoproteins of other species. These results suggest that MHV-A59 binds to a mouse-specific epitope of MHVR, and they support the hypothesis that the species specificity of MHV-A59 infection may be due to the specificity of the virus-receptor interaction.  相似文献   

18.
Nonsteroidal anti-inflammatory drugs (NSAIDs), used extensively in clinical medicine, tend to cause adverse effects in the gastrointestinal tract. Earlier work has shown that oral administration of indomethacin produced oxidative damage in the small intestine and attenuation of the glycocalyx layer of the mucosa. The present study assessed, in greater detail, the alterations produced in the glycocalyx of rat small intestinal mucosa in response to indomethacin, with specific reference to surfactant-like particles (SLP) and brush border membranes (BBM). Changes in gut flora in response to the drug were also studied, as it has been shown that luminal bacteria play a role in the pathogenesis of NSAID-induced intestinal damage. The levels of sugars such as sialic acid, fucose, hexose and hexosamine were increased in SLP and decreased in the BBM following indomethacin treatment, with the effects being maximal 24h after the administration of the drug. The composition of lipids in the SLP was also found to be altered. There was a significant increase in the number of bacteria in the luminal contents of the small intestine and caecum in these animals, as compared with controls. The number of bacteria adherent to the intestinal mucosa was also significantly higher in the drug-treated group. In vitro studies revealed that there was an increased tendency for bacteria to adhere to SLP isolated from indomethacin-treated rats. These results suggest that alterations in glycosylation of SLP and BBM in response to indomethacin, along with qualitative and quantitative changes in the luminal bacterial flora, may facilitate translocation of bacteria into the mucosa. These changes may contribute to the enteropathy observed as a result of NSAID treatment.  相似文献   

19.
I Jang  K Jung  J Cho 《Experimental Animals》2000,49(4):281-287
To examine age-related changes in the morphology of intestinal brush border membrane (BBM; microvilli) and specific activities of intestinal BBM enzymes including alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (gamma-GT), and disacchridase, four groups of Wistar rats were sacrificed at 2.5 wk, 5 wk, 5 mon and 23 mon. In an electron microscopic examination, morphologically a less dense BBM structure in the duodenum of rats aged 23 mon was observed than that of rats aged 5 mon. Specific activity of ALP in the duodenum from 5-mon-old rats was significantly higher than from rats aged 2.5 wk and 23 mon. The mucosal tissues from 5-wk-old rats had significantly higher specific activity of gamma-GT than did tissues from the other ages. In sucrase and maltase specific activities, 5-mon-old rats had higher activities of these enzymes than other age groups, especially 2.5-wk- and 23-mon-old rats. There was also a significant effect of site on intestinal BBM enzyme activities in post-weanling rats. Regional gradients of ALP and gamma-GT along the entire small intestine (duodenum > jejunum > ileum) were remarkable. Disaccharidase activities peaked in the jejunum and declined toward both the duodenum and ileum. Taken together the result obtained here suggested that 5-mon-old rats had the most elevated intestinal function. This result also strongly indicated that the structure of the intestinal BBM and development of intestinal BBM enzymes in Wistar rate were markedly influenced by age during the postnatal period.  相似文献   

20.
Oxalate bound specifically to the intestinal brush-border membrane (BBM) of pyridoxine-deficient rats, but not to BBM of control rats. The binding of oxalate to intestinal BBM of pyridoxine-deficient rats was rapid, reversible, dependent on concentration of oxalate, temperature sensitive and competitively inhibited by oxalate analogues. Kinetic analysis of the oxalate binding data revealed induction of two distinct classes of receptor site for oxalate. The high-affinity oxalate binding sites, reached saturation at 60-70 nM oxalate, had a Kd of 24.29 nM and the number of binding sites were 30 pmoles (i.e., 1.8.10(13) molecules). The low-affinity oxalate binding sites, could not be saturated under experimental conditions upto 1 microM oxalate. It had a Kd of 487.5 nM and the number of binding sites were 156 pmoles (i.e., 9.4.10(13) molecules). The apparent energy of activation was 19 kcal/mol. The half-saturation concentration of inhibitor (IC50) of oxalate was 0.4.10(-5) M, while all other structural analogues of oxalate had higher IC50 values. Among the competitive inhibitors tested IC50 was in the following order, pyruvate greater than maleate greater than oxaloacetate greater than glyoxylate greater than parabonate greater than oxalate. These kinetic characteristics indicate involvement of a membrane protein in oxalate binding and transport in rat intestinal brush-border membrane in pyridoxine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号