首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root or secondary leaf segments from maize ( Zea mays L. cv. Ganga safed-2) seedlings were incubated with 9-amino acids and two amides separately, each at 5 m M for 24 h, to study their effects on glutamate dehydrogenase (GDH) activity. Most of the compounds tested inhibited the specific activity of NADH-GDH and increased that of NAD+-GDH in the roots in the presence as well as in the absence of ammonium. In the leaves, such effects were recorded only with a few amino acids. Total soluble protein in the root and leaf tissues increased with the supply of most of the amino compounds. The effect of glutamate on enzyme activity and protein was concentration dependent in both tissues. When the enzyme extracts from root or leaf tissues were incubated with some of the amino acids, NADH-GDH declined while NAD+-GDH increased in most cases. The inhibition of NADH-GDH increased with increasing concentration of cysteine from 1 to 5 m M . The experiments demonstrate that most of the amino acids regulated GDH activity, possibly through some physicochemical modulation of the enzyme molecule.  相似文献   

2.
Background and AimsDomesticated maize (Zea mays ssp. mays) generally forms between two and six seminal roots, while its wild ancestor, Mexican annual teosinte (Zea mays ssp. parviglumis), typically lacks seminal roots. Maize also produces larger seeds than teosinte, and it generally has higher growth rates as a seedling. Maize was originally domesticated in the tropical soils of southern Mexico, but it was later brought to the Mexican highlands before spreading to other parts of the continent, where it experienced different soil resource constraints. The aims of this study were to understand the impacts of increased seminal root number on seedling nitrogen and phosphorus acquisition and to model how differences in maize and teosinte phenotypes might have contributed to increased seminal root number in domesticated maize.MethodsSeedling root system architectural models of a teosinte accession and a maize landrace were constructed by parameterizing the functional–structural plant model OpenSimRoot using plants grown in mesocosms. Seedling growth was simulated in a low-phosphorus environment, multiple low-nitrogen environments, and at variable planting densities. Models were also constructed to combine individual components of the maize and teosinte phenotypes.Key ResultsSeminal roots contributed ~35 % of the nitrogen and phosphorus acquired by maize landrace seedlings in the first 25 d after planting. Increased seminal root number improved plant nitrogen acquisition under low-nitrogen environments with varying precipitation patterns, fertilization rates, soil textures and planting densities. Models suggested that the optimal number of seminal roots for nutrient acquisition in teosinte is constrained by its limited seed carbohydrate reserves.ConclusionsSeminal roots can improve the acquisition of both nitrogen and phosphorus in maize seedlings, and the increase in seed size associated with maize domestication may have facilitated increased seminal root number.  相似文献   

3.
In maize ( Zea mays L. cv. LG 11) roots cultured in humid air, the presence of hairs was not related to root growth. However, maximum hair length and length of the hair zone could be correlated to the elongation rate of the primary root. Under the growth conditions used, the emergence of root hairs always took place in the extending zone. In more basal regions, rhizodermal cells could not give rise to root hairs. Results were similar for roots preincubated in a buffer solution.  相似文献   

4.
5.
玉米离体根尖的多层滤纸床液体静止培养方法   总被引:8,自引:1,他引:7  
设计建立了适于玉米根尖离体培养的多层滤纸床液体静止培养方法,培养的适宜体系为:1/4MS大量元素改良+1/2MS微量元素+IBA0.1-0.3mg/L,黑暗培养。该方法避免了传统液体培养通气状况不良的问题,玉米根的生长速度可达到1-2cm/d,分支和生长正常。该方法在控制条件下快速繁殖根系,成本低廉,简便易行,是根系发育和生理研究的理想实验体系。  相似文献   

6.
The effects of NO?3 and NH+4 nutrition on the rates of dark incorporation of inorganic carbon by roots of hydroponically grown Zea mays L. cv. 712 and on the metabolic products of this incorporation, were determined in plants supplied with NaH14CO3 in the nutrient solution. The shoots and roots of the plants supplied with NaH14CO3 in the root medium for 30 min were extracted with 80%; (v/v) ethanol and fractionated into soluble and insoluble fractions. The soluble fraction was further separated into the neutral, organic acid, amino acid and non-polar fractions. The amino acid fraction was then analyzed to determine quantities and the 14C content of its individual components. The rates of dark incorporation of inorganic carbon calculated from H14CO?3 fixation and attributable to the activity of phosphoenolpyuvate carboxylase (EC 4.1.1.31), were 5-fold higher in ammonium-fed plants than in nitrate-fed plants after a 30-min pulse of 14C. This activity forms a small, but significant component of the carbon budget of the root. The proportion of 14C located in the shoots was also significantly higher in ammonium-fed plants than in nitrate-fed plants, indicating more rapid translocation of the products of dark fixation to the shoots in plants receiving NH+/sp4 nutrition. Ammonium-fed plants favoured incorporation of 14C into amino acids, while nitrate-fed plants allocated relatively more 14C into organic acids. The amino acid composition was also dependent on the type of nitrogen supplied, and asparagine was found to accumulate in ammonium-fed plants. The 14C labelling of the amino acids was consistent with the diversion of 14C-oxaloacetate derived from carboxlyation of phosphoenolpyruvate into the formation of both asparatate and glutamate. The results support the conclusion that inorganic carbon fixation in the roots of maize plants provides an important anaplerotic source of carbon for NH+4 assimilation.  相似文献   

7.
8.
Accumulation of ABA in maize roots in response to root severing   总被引:3,自引:0,他引:3  
  相似文献   

9.
施氮时期对玉米土壤硝态氮含量变化及氮盈亏的影响   总被引:23,自引:3,他引:23  
在“郑单 95 8”(9株 / m2 )组成的土 -植系统 ,研究了不施氮、基施氮 10叶展追氮、基施氮 吐丝期追氮和基施氮 乳熟期追氮共 4个处理下 0~ 2 0 0 cm的土壤 NO- 3- N含量在夏玉米生长期间的变化和土壤氮素的表观盈亏量 ,结果表明 :2 0 cm以上的土壤 NO- 3- N含量以大口期为界、2 0 cm以下的土壤 NO- 3- N含量以吐丝期为界前降后升。在 0~ 2 0 cm土层 ,与不施氮相比 ,施氮能增加土壤 NO- 3- N含量 ,而且吐丝期和乳熟至成熟阶段的 NO- 3- N含量在 10叶展期和吐丝期各自追氮后均显著增加。在 2 0~4 0 cm土层 ,乳熟期的 NO- 3- N含量施氮后明显比不施氮高。在 80 cm以下土层 ,施氮后的土壤 NO- 3- N含量明显比不施氮高 ;追氮期相比 ,后一追氮处理在乳熟期和成熟期的 NO- 3- N含量均比前一追氮处理明显增加 ,其中成熟期基施氮 乳熟期追氮处理在 16 0~ 2 0 0 cm土层的 NO- 3- N含量比基施氮 吐丝期追氮处理 (为 2 5 .3m g N/ kg(干土 ) )高 16 %。土壤氮素的表观盈余发生在吐丝期之前且 80 %以上盈余量出现在大口期前 ,表观亏损出现在吐丝期以后且其亏损量在乳熟期前后各占一半。经玉米季后 ,本试验中不施氮处理出现表观盈余 (为 5 6 .3kg N/ hm2 ) ;施氮后表观盈余量增加 ,主要是施氮减少了吐丝以后  相似文献   

10.
Roots and leaves of Zea mays L. cv. Ganga Safed-2 seedlings grown with nutrient solution containing either 10 m M KNO3 or NH4Cl or 5 m M NH4NO3 had considerably higher glutamate synthase (NADH, EC 1.4.1.14) activity than the corresponding organs from seedlings grown without any nitrogen. The supply of inorganic nitrogen for a short time, i.e. 3 h, to roots and leaves excised from seedlings grown without nitrogen also increased the enzyme activity in these organs. This increase was more pronounced with nitrate than with ammonium nitrogen. When excised roots and leaves from NH4NO3-grown seedlings were incubated in a minus nitrogen medium for 24 h, the enzyme activity declined considerably. This decline was inhibited to some extent by nitrogen, especially by nitrate. Inorganic nitrogen prevented similarly the decline in in vitro enzyme activity during 24 h storage at 25°C, more regularly for the root than for the leaf enzyme. The experiments demonstrate the role of inorganic nitrogen in the regulation of glutamate synthase activity.  相似文献   

11.
Drought is a major abiotic stress that threatens maize production globally. A previous genome‐wide association study identified a significant association between the natural variation of ZmTIP1 and the drought tolerance of maize seedlings. Here, we report on comprehensive genetic and functional analysis, indicating that ZmTIP1, which encodes a functional S‐acyltransferase, plays a positive role in regulating the length of root hairs and the level of drought tolerance in maize. We show that enhancing ZmTIP1 expression in transgenic Arabidopsis and maize increased root hair length, as well as plant tolerance to water deficit. In contrast, ZmTIP1 transposon‐insertional mutants displayed the opposite phenotype. A calcium‐dependent protein kinase, ZmCPK9, was identified as a substrate protein of ZmTIP1, and ZmTIP1‐mediated palmitoylation of two cysteine residues facilitated the ZmCPK9 PM association. The results of this research enrich our knowledge about ZmTIP1‐mediated protein S‐acylation modifications in relation to the regulation of root hair elongation and drought tolerance. Additionally, the identification of a favourable allele of ZmTIP1 also provides a valuable genetic resource or selection target for the genetic improvement of maize.  相似文献   

12.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

13.
Effect of salicylic acid on nitrate reductase activity in maize seedlings   总被引:2,自引:0,他引:2  
The effect of different concentrations of salicylic acid on total Kjeldahl nitrogen and nitrate reductase activity in the maize ( Zea mays L.) seedling was studied. The total nitrogen of the maize embryonic axis (root + shoot) from seedlings raised with 10 m M Ca(NO3)2 for 5 days was substantially higher than that from the control when 0.01 m M salicylic acid was supplied. As supply of high (1 m M ) concentrations of salicylic acid decreased the accumulation of organic nitrogen. The in vivo activity of nitrate reductase in the roots increased at low concentrations of salicylic acid, while high concentrations were inhibitory. The stimulative concentration of the acid protected in vivo loss of nitrate reductase activity under non-inducing conditions, whereas it had no effect on in vitro loss of enzyme. It is suggested that salicylic acid increases in vivo enzyme activity indirectly, to some extent by protecting the natural inactivation of the enzyme.  相似文献   

14.
In a greenhouse experiment, the effect of arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) colonization on N assimilation in maize (Zea mays L.) was examined after well-watered, drought and recovery periods. Seeds of selection cycles C0 (drought-sensitive) and C8 (drought-resistant) of the tropical maize cultivar Tuxpeño sequía were used for this study. Maize plants were exposed or not to drought stress for 3 weeks (45-65 days after sowing, DAS) followed by 3 weeks of recovery (66-86 DAS) at the preflowering stage. Root and shoot samples harvested at the end of the drought or well-watered and recovery periods were determined for key enzymes involved in N assimilation (NR, nitrate reductase; NiR, nitrite reductase; GS, glutamine synthetase; GOGAT, glutamate synthase), protein and amino acid concentrations, and total N contents. Drought stress significantly (P ≤ 0.01 or P ≤ 0.001) decreased all the enzyme activities except NiR in the roots and shoots of both cultivars. After 3 weeks of drought, the AM roots of both cultivars had higher activities of NR (C0, 45%; C8, 26%), GS (C0, 76%; C8, 33%) and GOGAT (C0, 41%; C8, 53%) than non-AM roots and were comparable to well-watered plants. These enzyme activities were also enhanced in drought-stressed AM shoots of C0 and C8. Total amino acid concentrations in AM plants of C0 were 4.6 and 1.6 times higher in roots and shoots, respectively, compared to non-AM plants. The predominant amino acids detected were Ala, Arg, Asn, Asp, Gln and Glu which constituted approximately 56 and 75% of the total pool in roots and shoots, respectively. Soluble proteins and total N contents were also higher in AM plants than non-AM plants under drought conditions. The enhancement of N-assimilating enzymes and nitrogenous compounds in maize may indicate a transfer of NO3? through the extraradical mycelium or increased N assimilation due to the AM symbiosis. Our overall results suggest that AM association plays an important role in enhancing N assimilation or N nutritional status which enables the host plant to withstand drought conditions and recover after stress is relieved.  相似文献   

15.
Mekonnen  Kindu  Buresh  Roland J.  Jama  Bashir 《Plant and Soil》1997,188(2):319-327
One hypothesis for a benefit of integrating trees with crops is that trees with deep root systems can capture and pump up nutrients from below the rooting zone of annual crops. Few studies have compared both root and nutrient distribution for planted trees, crops and grassland vegetation. A field study was conducted on a Kandiudalfic Eutrudox in the highlands of western Kenya to measure rooting characteristics and distribution of inorganic N and water in three land-use systems (LUS): (i) Sesbania sesban (L.) Merr. fallow, (ii) uncultivated natural weed fallow and (iii) unfertilized maize (Zea mays L.) monoculture. The maximum rooting depth was 1.2 m in the maize LUS, 2.25 m in a 13-month-old natural fallow, and > 4 m in a 15-month-old sesbania fallow. Total root length was 1.26 km m-2 for the maize LUS, 5.98 km m-2 for the natural fallow, and 4.56 km m-2 to 4 m for the sesbania fallow. Root length to 1.2 m was greater (p < 0.01) for natural fallow than for maize and sesbania fallow. A considerable portion of the sesbania root length to 4 m was in the subsoil; 47% was at 1.2 to 4 m and 31% was at 2.25 to 4 m. Deep rooting of sesbania coincided with lower soil water below 2 m in the sesbania fallow than the natural fallow. Nitrate-N, but not ammonium-N, to 4 m was affected by LUS. Total nitrate to 4 m was 199 kg N ha-1 for the maize LUS, 42 kg N ha-1 for the natural fallow and 51 kg N ha-1 for the sesbania fallow. Soil nitrate in the maize LUS was highest at 0.3 to 1.5-m depth on this Oxisol with anion sorption capacity. No such accumulation of subsoil nitrate was present under sesbania and natural fallow.  相似文献   

16.
Quantitative analyses of indol-3yl-acetic acid (I aa ) in Zea mays L. (cv. LG 11) root segments cultured in vitro were performed by gas chromatography-mass spectrometry with selected ion monitoring. The root extracts were first purified by highperformance liquid chromatography. Root primordia initiation in intact and decapitated roots showed different patterns: decapitation strongly enhanced primordia initiation in their first 10 mm. During the culture (5 days), I aa content decreased in both intact and decapitated roots. No correlation was found between the level of endogenous auxin and the numher of root primordia initiated from either intact or decapitated maize root segments.  相似文献   

17.
The epidermal surface of the maize root tip   总被引:2,自引:2,他引:0  
  相似文献   

18.
The efficiency of sulfate uptake was evaluated in excised roots of 22 maize genotypes, 12 inbreds and 10 hybrids, in order to study the relationship between the kinetic characteristics of the uptake and the grain productivity. During root elongation, the uptake capacity showed a pulse which appeared when the root reached 1/3 to 1/2 of its final length. The size of the accumulated pool of sulfate was significantly correlated with the productivity. The kinetic parameters of the uptake, Vmax and Km, followed the same trend, showing pulses, whoxe maximum had the same position for Vmax and Km in each genotype. The variability with the genotype of the size and duration of the Vmax pulse was not strictly connected with that of Km. The main correlation between Vmax and Km patterns was the following; inbreds were generally characterized by low Vmax and low Km; hybrids by high Vmax and high Km. As a consequence, in most cases, the benefit of the heterotic stimulation of Vmax was contrasted by the loss of affinity of the transport system or the nutrients.  相似文献   

19.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

20.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root : shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号