首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major central site of olfactory information processing in the terrestrial slug Limax maximus is the procerebral lobe of the cerebral ganglion, which exhibits oscillatory dynamics of its local field potential and propagates activity waves from its apex to its base, as determined by multisite optical and electrical measurements in vitro. The learning-dependent uptake of Lucifer yellow into procerebral neurons suggests that the procerebral lobe may form learned representations of odors. To determine the role of the procerebral lobe in odor processing and odor learning, we developed procedures to implant fine wire electrodes in the lobe, which allowed recordings of local field potential in freely behaving slugs. The procerebral lobe displays oscillatory dynamics of its local field potential in vivo; however the amplitude and frequency of the local field potential are much more variable in vivo than in vitro. Odor presentation leads to increased frequency and amplitude of the local field potential signal. Several lines of evidence indicate that the variations in the local field potential signal recorded in vivo are not due to movement artifacts or activity in adjacent muscles. Multiple amine, gaseous, and peptide neuromodulators known to be present in the procerebral lobe provide pathways by which activity or coupling of bursting neurons in the procerebral lobe could be altered, resulting in the observed amplitude and frequency modulation of the local field potential.  相似文献   

2.
The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide(CO) are prominent and universal components of the array ofneurotransmitters found in olfactory information processingsystems. These highly mobile communication compounds have effectson both second messenger signaling and directly on ion channelgating in olfactory receptors and central synaptic processingof receptor input. Olfactory systems are notable for the plasticityof their synaptic connections, revealed both in higher-orderassociative learning mechanisms using odor cues and developmentalplasticity operating to maintain function during addition ofnew olfactory receptors and new central olfactory interneurons.We use the macrosmatic terrestrial mollusk Limax maximus toinvestigate the role of NO and CO in the dynamics of centralodor processing and odor learning. The major central site ofodor processing in the Limax CNS is the procerebral (PC) lobeof the cerebral ganglion, which displays oscillatory dynamicsof its local field potential and periodic activity waves modulatedby odor input. The bursting neurons in the PC lobe are dependenton local NO synthesis for maintenance of bursting activity andwave propagation. New data show that these bursting PC interneuronsare also stimulated by carbon monoxide. The synthesizing enzymefor carbon monoxide, heme oxygenase 2, is present in the neuropilof the PC lobe. Since the PC lobe exhibits two forms of synapticplasticity related to both associative odor learning and continualconnection of new receptors and interneurons, the use of multiplegaseous neurotransmitters may be required to enable these multipleforms of synaptic plasticity.  相似文献   

3.
After odor conditioning intact Limax maximus and injecting LY into their haemocoel, labeled groups of neurons are found in either the right or left procerebral lobe but never in both procerebral lobes. This suggests that a competitive interaction occurs between right and left odor processing pathways of which the procerebral lobe is a part. We use the nerve discharge in the external peritentacular nerve evoked by applying a puff of conditioned odor to the nose to document crossed inhibition between left and right odor processing pathways. Responses in the external peritentacular nerve evoked by stimulating one superior nose with a conditioned odor are strongly lateralized as responses occur only on the stimulated side. Stimulating both superior noses simultaneously with the same conditioned odor yields responses in both external peritentacular nerves that resemble the sum of responses to unilateral stimulation. Simultaneously stimulating both superior noses, each with a different conditioned odor, leads to strong inhibition of both external peritentacular nerve responses. The crossed inhibition is also evident if both superior and inferior noses on the same side are stimulated simultaneously. A lateral inhibitory mechanism, situated postsynaptic to odor recognition, appears to inhibit external peritentacular nerve responses if the two noses receive conflicting sensory inputs. Accepted: 14 December 1999  相似文献   

4.
Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity.  相似文献   

5.
Olfactory systems combine an extraordinary molecular sensitivity with robust synaptic plasticity. Central neuronal circuits that perform pattern recognition in olfaction typically discriminate between hundreds of molecular species and form associations between odor onsets and behavioral contingencies that can last a lifetime. Two design features in the olfactory system of the terrestrial mollusk Limax maximus may be common elements of olfactory systems that display the twin features of broad molecular sensitivity and rapid odor learning: spatially coherent oscillations in the second-order circuitry that receives sensory input; and involvement of the interneuronal messengers nitric oxide (NO) and carbon monoxide (CO) in sensory responses and circuit dynamics of the oscillating olfactory network. The principal odor processing center in Limax, the procerebrum (PC) of the cerebral ganglion, contains on the order of 105 local interneurons and receives both direct and processed input from olfactory receptors. Field potential recordings in the PC show an oscillation at approximately 0.7 Hz that is altered by odor input. Optical recordings of voltage changes in local regions of the PC show waves of depolarization that originate at the distal pole and propagate to the base of the PC. Weak odor stimulation transiently switches PC activity from a propagating mode to a spatially uniform mode. The field potential oscillation in the PC lobe depends on intercellular communication via NO, based on opposing effects of reagents that decrease or increase NO levels in the PC. Inhibition of NO synthase slows the field potential oscillation, while application of exogenous NO increases the oscillation frequency. A role for CO in PC dynamics is suggested by experiments in which CO liberation increases the PC oscillation frequency. These design features of the Limax PC lobe odor processing circuitry may relate to synaptic plasticity that subserves both connection of new receptors throughout the life of the slug and its highly developed odor learning ability. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Glutamate-induced responses in the procerebral neurons of the terrestrial slug Limax marginatus were examined using the nystatin-perforated patch recording technique applied in the voltage-clamp mode and local application of drugs. The procerebrum contains two types of interneurons with different spontaneous activities, bursting and nonbursting neurons. In the bursting neurons, a puff of glutamate evoked a rapidly desensitizing current followed by a smaller sustained current. The reversal potential of the early component showed that the current was mediated by Cl ions, while the late component was presumed to be mediated by K+ ions. In the nonbursting neurons, glutamate evoked a sustained current with a strong outward rectification, and the current was mediated by K+ ions. Ibotenate selectively evoked the rapidly desensitizing response in the bursting neurons, whereas quisqualate evoked a non-desensitizing K+ current both in the bursting and nonbursting neurons. The glutamate-induced K+ current had similar characteristics with the spontaneous synaptic activities in the procerebrum neurons, suggesting the possibility that glutamate receptors are involved in the spontaneous oscillatory activity. Accepted: 10 February 1999  相似文献   

7.
We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin‐induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss.  相似文献   

8.
9.
Summary 1. A variety of neuroendocrine approaches has been used to characterize cellular mechanisms governing luteinizing hormone-releasing hormone (LHRH) pulse generation. We review recentin vivo microdialysis,in vitro superfusion, andin situ hybridization experiments in which we tested the hypothesis that the amplitude and frequency of LHRH pulses are subject to independent regulation via distinct and identifiable cellular pathways.2. Augmentation of LHRH pulse amplitude is proposed as a central feature of preovulatory LHRH surges. Three mechanisms are described which may contribute to this increase in LHRH pulse amplitude: (a) increased LHRH gene expression, (b) augmentation of facilitatory neurotransmission, and (c) increased responsiveness of LHRH neurons to afferent synaptic signals. Neuropeptide Y (NPY) is examined as a prototypical afferent transmitter regulating the generation of LHRH surges through the latter two mechanisms.3. Retardation of LHRH pulse generator frequency is postulated to mediate negative feedback actions of gonadal hormones. Evidence supporting this hypothesis is reviewed, including results ofin vivo monitoring experiments in which LHRH pulse frequency, but not amplitude, is shown to be increased following castration. A role for noradrenergic neurons as intervening targets of gonadal hormone negative feedback actions is discussed.4. Future directions for study of the LHRH pulse generator are suggested.  相似文献   

10.
The effects of 2.7 mT and 10 mT static magnetic fields were investigated on two identified neurons with different bioelectric properties of the snail Helix pomatia. Membrane resting potential, amplitude, spiking frequency, and duration of action potential were measured. The two neurons of H. pomatia, parabolic burster Br and silent N1, showed different responses to a static magnetic field. The magnetic field of 2.7 mT intensity caused changes in the amplitude and duration of action potential of the Br neuron, whereas the 10 mT magnetic field changed the resting potential, amplitude spike, firing frequency, and duration of action potential of the Br neuron. Bioelectric parameters measured on the N1 neuron did not change significantly in these magnetic fields.  相似文献   

11.
An isolated brain preparation was used to characterize neurons innervating the accessory lobe (AL) of the spiny lobster (Panulirus argus). Four distinct classes of neurons responded to electrical stimulation of the olfactory (antennular) nerve. These cells responded to electrical stimulation with a long and variable latency; they also responded to odor stimulation in a nose-brain preparation. Neurons connecting the AL with the olfactory lobe branched in the central AL layer and selectively innervated olfactory lobe glomeruli. These cells had response latencies which were significantly shorter than those of other AL neurons. Intrinsic AL interneurons were heterogeneous as a population, and most arborized in irregular but circumscribed regions of either the lateral or medial layers. The final class of neurons branched ipsilaterally in the deutocerebral neuropil and bilaterally innervated only a few AL glomeruli. The physiology and morphology of these four classes of neurons confirm an olfactory function for the AL and identify the input and output regions of the lobe. Based on these findings, we propose that the AL processes odor information in the context of higher order multimodal input.Abbreviations AL accessory lobe - DCN deutocerebral neuropil - OGT olfactory-globular tract - OGTN olfactory-globular tract neuropil - OL olfactory lobe  相似文献   

12.
In Parkinson’s disease, neurons of the internal segment of the globus pallidus (GPi) display the low-frequency tremor-related oscillations. These oscillatory activities are transmitted to the thalamic relay nuclei. Computer models of the interacting thalamocortical (TC) and thalamic reticular (RE) neurons were used to explore how the TC-RE network processes the low-frequency oscillations of the GPi neurons. The simulation results show that, by an interaction between the TC and RE neurons, the TC-RE network transforms a low-frequency oscillatory activity of the GPi neurons to a higher frequency of oscillatory activity of the TC neurons (the superharmonic frequency transformation). In addition to the interaction between the TC and RE neurons, the low-threshold calcium current in the RE and TC neurons and the hyperpolarization-activated cation current (I h) in the TC neurons have significant roles in the superharmonic frequency transformation property of the TC-RE network. The external globus pallidus (GPe) oscillatory activity, which is directly transmitted to the RE nucleus also displays a significant modulatory effect on the superharmonic frequency transformation property of the TC-RE network. Action Editor: John Rinzel  相似文献   

13.
Serotonin-stimulated biochemical events in the procerebrum ofLimax   总被引:1,自引:0,他引:1  
1. The procerebrum (PC) of the terrestrial slug Limax maximus is of interest as a potential site of olfactory information processing (Gelperin et al., 1989). The neuromodulator serotonin is present in the procerebrum and can elicit action potentials from cultured procerebral neurons. We have investigated the effects of serotonin on second-messenger signaling systems and protein phosphorylation as a prelude to studies on long-term synaptic plasticity in the Limax procerebral lobe. 2. We found that several biochemical changes are triggered within 20 min of adding serotonin to the isolated procerebral lobe: adenylate cyclase is activated, protein phosphorylation and synthesis are modulated, and phosphatidylinositol-metabolism is stimulated. 3. Serotonin causes a rapid synthesis of cAMP, reaching a 20- to 30-fold increase within 1 min. Serotonin affects the rate of phosphorylation of several proteins, detected after a brief (20-min) incubation of the procerebral lobe in [32P]phosphate-containing medium. The level of synthesis of several proteins is altered by serotonin, as determined by alterations in [35S]methionine incorporation during a 20-min incubation. Serotonin also causes a slow accumulation of inositoltrisphosphate. 4. Our study shows that within a short time (less than 20 min) serotonin can influence several second-messenger signaling systems and the functional state and abundance of proteins in the procerebral lobe. These serotonin-stimulated events should have direct consequences for intercellular communication in the odor-processing network of the procerebral lobe.  相似文献   

14.
The digit‐like extensions (the digits) of the tentacular ganglion of the terrestrial slug Limax marginatus are the cell body rich region in the primary olfactory system, and they contain primary olfactory neurons and projection neurons that send their axons to the olfactory center via the tentacular nerves. Two cell clusters (the cell masses) at the bases of the digits form the other cell body rich regions. Although the spontaneous slow oscillations and odor responses in the tentacular nerve have been studied, the origin of the oscillatory activity is unknown. In the present study, we examined the contribution of the neurons in the digits and cell masses to generation of the tentacular nerve oscillations by surgical removal from the whole tentacle preparations. Both structures contributed to the tentacular oscillations, and surgical isolation of the digits from the whole tentacle preparations still showed spontaneous oscillations. To analyze the dynamics of odor‐processing circuits in the digits and tentacular ganglia, we studied the effects of γ‐aminobutyric acid, glutamate, and acetylcholine on the circuit dynamics of the oscillatory network(s) in the peripheral olfactory system. Bath or local puff application of γ‐aminobutyric acid to the cell masses decreased the tentacular nerve oscillations, whereas the bath or local puff application of glutamate and acetylcholine to the digits increased the digits' oscillations. Our results suggest the existence of two intrinsic oscillatory circuits that respond differentially to endogenous neurotransmitters in the primary olfactory system of slugs. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 304–318, 2004  相似文献   

15.
In in vivo and in vitro experiments there have been shown different mechanisms of regulation of hypothalamic vasopressinergic neurons, including regulation due to changes of activity level of brain catecholaminergic and NPY-ergic neurons innervating hypothalamic vasopressinergic cells. We demonstrated in in vitro experiments that dopamine and noradrenaline had no effects on vasopressin expression, but inhibited its release from cell perikarya in supraoptic and paraventricular nuclei of hypothalamus. Besides, activity of vasopressinergic neurons might probably be regulated via activation of synthesis of these neurotransmitters in vasopressinergic cells themselves in the supraoptic and paraventricular nuclei. To activate synthesis of various neurotransmitters, in our case, catecholamines and NPY, in vasopressinergic neurons, different stimuli adequate to trigger or activate synthesis of these substances are required. Synthesis of catecholamines in vasopressinergic cells of supraoptic and paraventricular nuclei was revealed after immobilization stress and adrenalectomy. NPY is synthesized in neurons of hypothalamic neurosecretory centers in norm, and its synthesis increases at disturbances of NPY-ergic innervation of vasopressinergic cells.  相似文献   

16.
The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston''s organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.  相似文献   

17.
Model of transient oscillatory synchronization in the locust antennal lobe   总被引:8,自引:0,他引:8  
Transient pairwise synchronization of locust antennal lobe (AL) projection neurons (PNs) occurs during odor responses. In a Hodgkin-Huxley-type model of the AL, interactions between excitatory PNs and inhibitory local neurons (LNs) created coherent network oscillations during odor stimulation. GABAergic interconnections between LNs led to competition among them such that different groups of LNs oscillated with periodic Ca(2+) spikes during different 50-250 ms temporal epochs, similar to those recorded in vivo. During these epochs, LN-evoked IPSPs caused phase-locked, population oscillations in sets of postsynaptic PNs. The model shows how alternations of the inhibitory drive can temporally encode sensory information in networks of neurons without precisely tuned intrinsic oscillatory properties.  相似文献   

18.
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.  相似文献   

19.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

20.
Nitrate reductase activity in leaf material ofLolium perenne L. cv. S24 was estimated using anin vivo assay method such that activity could be estimated at intervals of 5 minutes for up to two hours. The pattern of nitrate reductase activity, as estimated by nitrite accumulation, showed pronounced oscillatory behaviour with frequency of approximately 4 cycles per hour; at certain seasons however oscillatory activity was not shown. The phase of the oscillations observed in different experiments was not co-incident with respect to time of day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号