首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
On isolated preparations of the superior cervical ganglion (SCG, n = 8) taken from 21-day-old rats, we studied the intraganglion pathways and mechanisms underlying generation of synaptic responses of SCG neurons to antidromic stimulation. One of the three nerves connected with the SCG was stimulated, and compound action potentials were recorded simultaneously from the other two nerves; then, the order of stimulated and recorded nerves was changed. Orthodromic stimulation of the cervical sympathetic nerve (CSN) evoked responses in the internal carotid nerve (ICN), which could be completely blocked by hexamethonium, and responses in the external carotid nerve (ECN), which contained a component that was not blocked by this of the ECN caused responses in the CSN, which were not blocked by hexamethonium. Effects of superfusion of the SCG with a Ca2+-free solution allowed us to conclude that the hexamethonium-insensitive component of the responses in the CSN and ECN and ECN-CSN conduction can be explained by the presence of direct fibers going from the CSN to the ECN with no synaptic relay. Possible mechanisms underlying antidromic stimulation-induced synaptic responses in SCG neurons are discussed. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 396–399, July–October, 2007.  相似文献   

6.
A synthetic peptide corresponding to the C-terminus of the alpha 3 subunit of the rat neuronal nicotinic acetylcholine receptor (nAChR) was used to generate a rabbit polyclonal alpha 3 antibody. The specificity of this antibody was characterized by immunoblotting, immunohistochemical and immunoprecipitation techniques. Using this antibody, the relative densities of the alpha 3 subunit were quantitatively determined in different brain regions and in superior cervical ganglion (SCG). Among these regions, SCG, interpeduncular nucleus (IPN) and pineal gland showed the highest levels of alpha 3 protein expression. Habenula and superior colliculi had intermediate levels of expression. Low levels were found in cerebral cortex, hippocampus and cerebellum. The ontogenic profile of the alpha 3 subunit in the SCG was also determined. The alpha 3 protein level is low at postnatal day (P 1), but increases rapidly during the first seven postnatal days. This level then plateaus and remains stable through postnatal day 35. These findings suggest that neuronal nAChRs containing the alpha 3 subunit participate in important roles in specific regions of the rat brain and the SCG.  相似文献   

7.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   

8.
9.
Changes in the intracellular calcium concentration induced by activation of neurons of the isolated intact rat superior cervical ganglion were recorded. It is concluded that stimulation within the physiological range of frequencies can effectively increase the intracellular calcium concentration in these neurons. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 400–402, July–October, 2007.  相似文献   

10.
11.
12.
13.
The pentameric acetylcholine‐binding protein (AChBP) is a soluble surrogate of the ligand binding domain of nicotinic acetylcholine receptors. Agonists bind within a nest of aromatic side chains contributed by loops C and F on opposing faces of each subunit interface. Crystal structures of Aplysia AChBP bound with the agonist anabaseine, two partial agonists selectively activating the α7 receptor, 3‐(2,4‐dimethoxybenzylidene)‐anabaseine and its 4‐hydroxy metabolite, and an indole‐containing partial agonist, tropisetron, were solved at 2.7–1.75 Å resolution. All structures identify the Trp 147 carbonyl oxygen as the hydrogen bond acceptor for the agonist‐protonated nitrogen. In the partial agonist complexes, the benzylidene and indole substituent positions, dictated by tight interactions with loop F, preclude loop C from adopting the closed conformation seen for full agonists. Fluctuation in loop C position and duality in ligand binding orientations suggest molecular bases for partial agonism at full‐length receptors. This study, while pointing to loop F as a major determinant of receptor subtype selectivity, also identifies a new template region for designing α7‐selective partial agonists to treat cognitive deficits in mental and neurodegenerative disorders.  相似文献   

14.
We investigated the role of vitamin D in the sympathetic nervous system including the distribution of vitamin D receptors (VDR), 1α-hydroxylase and 24-hydroxylase (CYP24) in neuronal subpopulations and satellite glia in the superior cervical ganglia (SCGs) of rats using immunohistochemistry. VDR immunoreactivity was observed in the cytoplasm and nucleus of nearly all neurons in the SCG. Intensity of VDR fluorescence was significantly greater in the cytoplasm of neuropeptide Y (NPY) negative somata compared to NPY positive neurons. Immunoreactivity for 1α-hydroxylase also was observed in the cytoplasm of all neurons of the SCG, but the intensity of fluorescence was less in the nuclei. To the contrary, the immunoreactivity for CYP24 was stronger in the nuclei, although it was present at lower intensity also in the cytoplasm of neurons. VDR and 1α-hydroxylase immunofluorescence was observed in many non-neuron cells, except satellite glial cells, which exhibited weak CYP24 immunofluorescence. Expression of VDRs and key metabolizing enzymes indicated the importance of vitamin D in the autonomic nervous system and the ability of sympathetic neurons to activate and deactivate vitamin D for its autocrine and paracrine roles.  相似文献   

15.
16.
Several recent studies have used antisense oligonucleotides in the nervous system to probe the functional role of particular gene products. Since antisense oligonucleotide-mediated block of gene expression typically involves uptake of the oligonucleotides, we have characterized the mechanism of this uptake into developing neurons from embryonic chickens. Antisense oligonucleotides (15 mers) added to the bathing media are taken up into the embryonic chicken sympathetic neurons maintained in vitro. A portion of the oligonucleotide uptake is temperature dependent and saturates at extracellular oligonucleotide concentrations ≥ 20 μM. This temperature sensitive, saturable component is effectively competed by single nucleotides of ATP and AMP and is reminiscent of receptor-mediated endocytosis of oligonucleotides described in non-neuronal cells. The efficiency of the oligonucleotide uptake system is dependent on the developmental stage of the animal but independent of the number of days that the neurons are maintained in vitro. Following the uptake of antisense oligonucleotides directed against ion channel subunit genes expressed by these neurons (nicotinic acetylcholine receptor subunit α3; nAChR α3), biophysical assays reveal that the functional expression of the target gene is largely blocked. Thus the number of wild type nAChR channels expressed is decreased by =80%–90%. Furthermore, following antisense deletion of α3, “mutant” nAChRs with distinct functional characteristics are expressed. In sum, these studies characterize the uptake of antisense oligonucleotide and demonstrate the functional block of specific gene expression in primary developing neurons. In addition, the functional studies emphasize the need for sensitive and specific assay following antisense deletion, since other homologous gene products may substitute for the targeted gene resulting in new phenotypes that are subtly different from wild type. © 1993Wiley-Liss, Inc.  相似文献   

17.
In situ hybridization histochemistry was used to map the distribution of α2, α3, α4, and β2 nAChR subunit mRNAs throughout the peripheral vestibular system of the rat. The α4 and β2 nAChR subunit genes were co-expressed by populations of primary afferent neurons within Scarpa's ganglion, while there was no expression of the α2, α3, α4, or β2 nAChR subunit genes by type I or type II vestibular hair cells. α-bungarotoxin binding to nAChRs in the vestibular end-organs was primarily limited to the afferent chalices surrounding type I hair cells and the basal aspect of type II hair cells. These data suggest that nAChRs composed of α4 and β2 subunits are localized on afferent chalices innervating the type I vestibular hair cells and that the direct cholinergic efferent innervation of the type II vestibular hair cells utilizes nAChR composed of other subunits.  相似文献   

18.
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*‐nAChR are down‐regulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose–responses and quantitative ligand‐binding autoradiography were used to define nicotine sensitivity of changes in α4β2*‐nAChR and α6β2*‐nAChR expression. α6β2*‐nAChR down‐regulation by chronic nicotine exposure in dopaminergic and optic‐tract nuclei was ≈three‐fold more sensitive than up‐regulation of α4β2*‐nAChR. In contrast, nAChR‐mediated [3H]‐dopamine release from dopamine‐terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR‐mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]‐DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function.

  相似文献   


19.
Following peripheral nerve transection, a series of biochemical changes occurs in axons and Schwann cells both at the site of lesion and distal to it. Macrophages differentiated from monocytes that invade the area in response to transection (elicited macrophages) and, perhaps, also macrophages normally present in the tissue (resident macrophages) play important roles in these changes. In addition, nerve transection produces changes in the cell bodies of axotomized neurons and their surrounding glial cells, located at some distance from the lesion. To determine whether macrophages might play a role in the changes occurring in the superior cervical ganglion (SCG) after axotomy, we examined the presence of macrophages before and after axonal damage. The monoclonal antibodies ED1, ED2, and OX6 were used, each of which recognizes a somewhat different population of macrophages. Ganglia from normal rats contained a population of resident cells that were ED2+ but very few that were ED1+. Within 2 days after the postganglionic nerves were transected, the number of ED1+ cells increased substantially, with little change in immunostaining for ED2. These data, in combination with published studies on other tissues, suggest that ED1 in the SCG is selective for elicited macrophages and ED2 for resident macrophages. OX6 immunostaining was prominent in normal ganglia but also increased significantly after axotomy, suggesting that it reflects both macrophage populations. Systemic administration of 6-hydroxydopamine, a neurotoxin that causes the destruction of sympathetic nerve endings, also produced an increase in ED1 immunostaining. Thus, the change in ED1 immunostaining in the SCG does not require surgery, with the attendant servering of local blood vessels and connective tissue, but rather only the disconnection of sympathetic neurons from their end organs. The time course of the invasion of monocytes after axotomy indicates that this process is not required to trigger the biochemical changes occurring in the ganglion within the first 24 h. On the other hand, the existence of a resident population of macrophages raises the possibility that changes in those cells might be involved. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
There is considerable evidence that adenosine 3, 5-cyclic monophosphate (cAMP) is involved in the modulation of synaptic transmission in the guinea pig superior cervical ganglion (SCG). Presynaptic muscarinic receptors are known to attenuate, when activated, acetylcholine (ACh) release in the periphery as well as in the brain. Thus, the possible relationship between ganglionic adenylate cyclase activity and the output of ACh from electrically stimulated ganglia, preloaded with [3H]choline, was investigated. The muscarinic agonist oxotremorine significantly reduced in a dose-dependent manner the electrically evoked neurotransmitter release. The adenylate cyclase inhibitor N-(cis-2-phenylcyclopentyl)azacyclotridecan-2-imine hydrochloride (RMI 12330 A) also decreased ACh output. The inhibitory effects of these two drugs were additive. In crude ganglion membrane fractions oxotremorine significantly inhibited adenylate cyclase activity. The results indicate that drugs capable of inhibiting adenylate cyclase, significantly decrease ACh output from preganglionic nerve terminals in guinea pig SCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号