首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) is a critical component of the regulatory apparatus controlling the activity of this immunologically important enzyme. To gain insight into the structural features associated with the activated form of Itk, we have solved the NMR structure of the SH2 domain bound to a phosphotyrosine-containing peptide (pY) and analyzed changes in trans-hydrogen bond scalar couplings ((3h)J(NC')) that result from pY binding. Isomerization of a single prolyl imide bond in this domain is responsible for simultaneous existence of two distinct SH2 conformers. Prolyl isomerization directs ligand recognition: the trans conformer preferentially binds pY. The structure of the SH2/pY complex provides insight into the ligand specificity; the BG loop in the ligand-free trans SH2 conformer is pre-arranged for optimal contacts with the pY+3 residue of the ligand. Analysis of (3h)J(NC') couplings arising from hydrogen bonds has revealed propagation of structural changes from the pY binding pocket to the CD loop containing conformationally heterogeneous proline as well as to the alphaB helix, on the opposite site of the domain. These findings offer a structural framework for understanding the roles of prolyl isomerization and pY binding in Itk regulation.  相似文献   

2.
Structural comparison of two yeast tRNA Glu 3 genes.   总被引:11,自引:6,他引:5       下载免费PDF全文
A Eigel  J Olah    H Feldmann 《Nucleic acids research》1981,9(12):2961-2970
DNA sequences in a 1.7 kb Pst fragment from yeast have been determined. This fragment is part of a yeast 7.4 kb Hind III segment cloned ino pBR322 (pY 5). The fragment carries a single gene for a glutamate tRNA. The coding portion of this gene is identical in sequence to that of the tRNA Glu 3 gene from pY 20 [1]. The flanking regions differ in their sequences, but possible secondary structures within the 5'-flanking regions bear similar features. Sequence homologies between pY 5 and pY 20 were detected far outside the tRNA genes. More surprisingly, extended sequence homologies were seen between the flanking regions of the pY 20 tRNA Glu 3 gene and a tRNA Ser gene [2,3]. We have also checked the known tRNA genes for structural similarities. Hybridization studies indicate that portions of the Pst fragment are repeated within the yeast genome.  相似文献   

3.
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived phosphotyrosyl peptides (P-peptides) by using molecular dynamics, free energy, and surface plasmon resonance (SPR) analyses. In SPR analysis, these P-peptides showed no binding to the C-SH2 domain, but P-peptides containing a phospho-YXXM or a non-phospho-YXXM motif did bind to the N-SH2 domain. The N-SH2 domain has two phosphotyrosine binding sites in its N- (N1) and C- (N2) terminal regions. Interestingly, we found that P-peptides of pY1180 and pY1241 favored to bind to the N2 site, although all other P-peptides showed favorable binding to the N1 site. Remarkably, two phosphotyrosines, pY1178 and pY1243, which are just 63 amino acids apart from the pY1241 and pY1180, respectively, showed favorable binding to the N1 site. These findings indicate a possibility that the pair of phosphotyrosines, pY1178-pY1241 or pY1243-pY1180, will fold into an appropriate configuration for binding to the N1 and N2 sites simultaneously. Our model structures of the cytoplasmic C-terminal domain of ErbB3 receptor also strongly supported the speculation. The calculated binding free energies between the N-SH2 domain and P-peptides showed excellent qualitative agreement with SPR data with a correlation coefficient of 0.91. The total electrostatic solvation energy between the N-SH2 domain and P-peptide was the dominant factor for its binding affinity.  相似文献   

4.
This study utilized the glutathione transferase (GST) pull-down assay to identify novel substrates of an osteoclastic protein-tyrosine phosphatase, PTP-oc. Consistent with the previous findings that the phosphorylated tyr-527 (pY527) of Src is a substrate of PTP-oc, the major protein pulled down with the phosphatase-deficient (PD)-PTP-oc-GST trapping mutant in RAW264.7 cells was Src. The GST-PD-PTP-oc also pulled down pY-Syk and pY-β(3)-integrin, but not after PP2 pretreatment. However, PTP-oc transgenic osteoclasts or PTP-oc-overexpressing RAW264.7 cells had elevated, and not reduced, levels of pY525/526-Syk and pY759-β(3) integrin, and the PTP-oc siRNA treatment drastically reduced levels of pY525/526 Syk and pY759-β(3)-integrin in RAW264.7 cells. These findings are incompatible with the premise that they are substrates of PTP-oc. The PTP-oc-dependent increases in pY525/526-Syk and pY759-β(3)-integrin levels were completely blocked by PP2, indicating that these effects are secondary to PTP-oc-mediated activation of the Src protein-tyrosine kinase (PTK). Overexpression of PTP-oc increased, and siRNA-mediated suppression of PTP-oc reduced, pY160-Vav1, pY173-Vav3, and pY783-PLCγ levels, and Rac1 activation, which are downstream mediators of the ITAM/Syk signaling. Overexpression of PTP-oc also increased, and PTP-oc siRNA treatment decreased, the pY-Shp1 levels, which were blocked by PP2. Since Shp1 is a negative regulator of osteoclast activity and is a key mediator of the ITIM signaling, these findings suggest that PTP-oc is an upstream suppressor of the ITIM/Shp1 signaling through PTP-oc-induced Src-dependent Shp1 phosphorylation. In summary, PTP-oc plays a central regulatory role in the concerted regulation of the β(3)-integrin, the ITAM/Syk, and the ITIM/Shp1 signaling indirectly through activation of Src PTK.  相似文献   

5.
H J Goren  M F White  C R Kahn 《Biochemistry》1987,26(8):2374-2382
We have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the beta-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22 degrees C with low concentrations (5-10 micrograms/mL, pH 7.4) of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the beta-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. Mild trypsin digestion reduced the apparent molecular mass of the beta-subunit from 95 to 85 kDa, and then to 70 kDa. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the beta-subunit (alpha Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the beta-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. Treatment of the intact receptor with staphylococcal V8 protease also converted the beta-subunit to an 85-kDa fragment that did not bind to alpha Pep-1, contained about 50% of the initial radioactivity, and lacked pY2 and pY3. Elastase rapidly degraded the receptor to inactive fragments between 37 and 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.  相似文献   

7.
Starting from known Src SH2 inhibitors incorporating five-membered heterocycles or benzamide scaffolds, we prepared tetrasubstituted imidazole compounds able to interact with the pY, pY+1 and pY+3 binding sites of the Src SH2 protein. The synthesis and biological data are presented.  相似文献   

8.
A combinatorial phosphotyrosyl (pY) peptide library was screened to determine the amino acid preferences at the pY+4 to pY+6 positions for the four SH2 domains of protein-tyrosine phosphatases SHP-1 and SHP-2. Individual binding sequences selected from the library were resynthesized and their binding affinities and specificities to various SH2 domains were further evaluated by SPR studies, stimulation of SHP-1 and SHP-2 phosphatase activity, and in vitro pulldown assays. These studies reveal that binding of a pY peptide to the N-SH2 domain of SHP-2 is greatly enhanced by a large hydrophobic residue (Trp, Tyr, Met, or Phe) at the pY+4 and/or pY+5 positions, whereas binding to SHP-1 N-SH2 domain is enhanced by either hydrophobic or positively charged residues (Arg, Lys, or His) at these positions. Similar residues at the pY+4 to pY+6 positions are also preferred by SHP-1 and SHP-2 C-SH2 domains, although their influence on the overall binding affinities is much smaller compared with the N-SH2 domains. A structural model was generated to qualitatively interpret the contribution of the pY+4 and pY+5 residues to the overall binding affinity. Examination of pY motifs from known SHP-1 and SHP-2-binding proteins shows that many of the pY motifs contain a hydrophobic or positively charged residue(s) at the pY+4 and pY+5 positions.  相似文献   

9.
Site-selective dephosphorylation of receptor tyrosine kinases contributes to receptor regulation. The receptor-like protein tyrosine phosphatase DEP-1 site-selectively dephosphorylates the PDGF beta-receptor. DEP-1 dephosphorylation of original and chimeric phospho-peptides spanning the preferred pY1021 and the less preferred pY857 and pY562 sites was analyzed. Double substitutions of basic residues at -4 and +3 of pY857 and pY562 peptides improved affinity. Substitutions of single amino acids indicated preference for an acidic residue at position -1 and a preference against a basic residue at position +3. DEP-1 site-selective dephosphorylation of PDGF beta-receptor is thus determined by the primary sequence surrounding phosphorylation sites and involves interactions with residues spanning at least between positions -1 and +3.  相似文献   

10.
It was proposed previously that the FHA2 domain of the yeast protein kinase Rad53 has dual specificity toward pY and pT peptides. The consensus sequences of pY peptides for binding to FHA2, as well as the solution structures of free FHA2 and FHA2 complex with a pY peptide derived from Rad9, have been obtained previously. We now report the use of a pT library to screen for binding of pT peptides with the FHA2 domain. The results show that FHA2 binds favorably to pT peptides with Ile at the +3 position. We then searched the Rad9 sequences with a pTXXI/L motif, and tested the binding affinity of FHA2 toward ten pT peptides derived from Rad9. One of the peptides, (599)EVEL(pT)QELP(607), displayed the best binding affinity (K(d)=12.9 microM) and the greatest chemical shift changes. The structure of the FHA2 complex with this peptide was then determined by solution NMR and the structure of the complex between FHA2 and the pY peptide (826)EDI(pY)YLD(832) was further refined. Structural comparison of these two complexes indicates that the Leu residue at the +3 position in the pT peptide and that at the +2 position in the pY peptide occupy a very similar position relative to the binding site residues from FHA2. This can explain why FHA2 is able to bind both pT and pY peptides. This position change from +3 to +2 could be the consequence of the size difference between Thr and Tyr. Further insight into the structural basis of ligand specificity of FHA domains was obtained by comparing the structures of the FHA2-pTXXL complex obtained in this work and the FHA1-pTXXD complex reported in the accompanying paper.  相似文献   

11.
Epithelial to mesenchymal transition (EMT) and pulmonary fibrogenesis require epithelial integrin α3β1-mediated cross-talk between TGFβ1 and Wnt signaling pathways. One hallmark of this cross-talk is pY654-β-catenin accumulation, but whether pY654-β-catenin is a biomarker of fibrogenesis or functionally important is unknown. To clarify further the role of β-catenin in fibrosis, we explored pY654-β-catenin generation and function. α3β1 was required for TGFβ1-mediated activation of Src family kinases, and Src inhibition blocked both pY654 and EMT in primary alveolar epithelial cells (AECs). TGFβ1 stimulated β-catenin/Lef1-dependent promoter activity comparably in immortalized AECs stably expressing WT β-catenin as well as Y654E or Y654F β-catenin point mutants. But EMT was abrogated in the Tyr to Phe mutant. pY654-β-catenin was sensitive to the axin β-catenin turnover pathway as inhibition of tankyrase 1 led to high AEC axin levels, loss of pY654-β-catenin, and inhibition of EMT ex vivo. Mice given a tankyrase inhibitor (50 mg/kg orally) daily for 7 days beginning 10 days after intratracheal bleomycin had improved survival over controls. Treated mice developed raised axin levels in the lung that abrogated pY654-β-catenin and attenuated lung Snail1, Twist1, α-smooth muscle actin, and type I collagen accumulation. Total β-catenin levels were unaltered. These findings identify Src kinase(s) as a mediator of TGFβ1-induced pY654-β-catenin, provide evidence that pY654-β-catenin levels are a critical determinant of EMT and fibrogenesis, and suggest regulation of axin levels as a novel therapeutic approach to fibrotic disorders.  相似文献   

12.
The 5' nontranslated RNA (5'NTR) of the HM175 strain of human hepatitis A virus contains several pyrimidine-rich regions, the largest and most 5' of which (pY1) is an almost pure polypyrimidine tract located between nucleotides (nt) 99 and 138, which includes five tandem repeats of the sequence motif (U)UUCC(C). Previous modeling of the RNA secondary structure suggested that this region was likely to be single-stranded, but repetitive RNase V1 cleavage sites within these (U)UUCC(C) motifs indicated that pY1 possesses an ordered structure. To assess the role of this domain in replication of the virus, a series of large deletion mutations were created which involved the pY1 domain of an infectious cDNA clone. Deletion of 44 nt between nt 96 and 139, including the entire pY1 domain, did not reduce the capacity of the virus to replicate in BS-C-1 or FRhK-4 cells, as assessed by the size of replication foci in radioimmunofocus assays or by virus yields under one-step growth conditions. In contrast, viable virus could not be recovered from transfected RNAs in which the deletion was extended in a 5' direction by an additional 3 nt (delta 93-134), most likely because of the destabilization of a predicted stem-loop structure upstream of pY1. Deletion mutations extending in a 3' fashion to nt 140, 141, or 144 resulted in moderately (delta 96-140 and delta 96-141) or strongly (delta 99-144, delta 116-144, and delta 131-144) temperature-sensitive replication phenotypes. Although deletion of the pY1 domain did not by itself affect the replication phenotype of virus, the additional deletion of sequence elements within the pY1 domain (nt 99 to 130) substantially enhanced the temperature-sensitive phenotype of delta 131-144 virus. These data suggest that the (U)UUCC(C) motifs within the pY1 domain are conserved among wild-type viruses in order to serve a function required during infection in vivo but not in cell culture. In contrast, the single-stranded region located immediately downstream of pY1 (nt 140 to 144) is essential for efficient replication in cultured cells at physiological temperature. Viruses with deletion mutations involving nt 140 to 144 and viruses with large pY1 deletions but normal replication phenotypes in cell culture may have attenuation properties which could be exploited for vaccine development.  相似文献   

13.
Medulloblastoma (MB) is a high-grade pediatric brain malignancy that originates from neuronal precursors located in the posterior cranial fossa. In this study, we evaluated the role of STAT3 and IL-6 in a tumor microenvironment mediated drug resistance in human MBs. We established that the Group 3 MB cell line, Med8A, is chemosensitive (hence Med8A-S), and this is correlated with a basal low phosphorylated state of STAT3, while treatment with IL-6 induced robust increases in pY705-STAT3. Via incremental selection with vincristine, we derived the stably chemoresistant variant, Med8A-R, that exhibited multi-drug resistance, enhanced IL-6 induced pY705-STAT3 levels, and increased IL6R expression. Consequently, abrogation of STAT3 or IL6R expression in Med8A-R led to restored chemosensitivity to vincristine, highlighting a prominent role for canonical IL-6/STAT3 signaling in acquired drug resistance. Furthermore, Med8A-S subjected to conditioning exposure with IL-6, termed Med8A-IL6+ cells, exhibited enhanced vincristine resistance, increased expression of pY705-STAT3 and IL6R, and increased secretion of IL-6. When cocultured with Med8A-IL6+ cells, Med8A-S cells exhibited increased pY705-STAT3 and increased IL-6 secretion, suggesting a cytokine feedback loop responsible for amplifying STAT3 activity. Similar IL-6 induced phenomena were also observed in the Group 3 MB cell lines, D283 and D341, including increased pY705-STAT3, drug resistance, IL-6 secretion and IL6R expression. Our study unveiled autocrine IL-6 as a promoter of STAT3 signaling in development of drug resistance, and suggests therapeutic benefits for targeting the IL-6/STAT3 signaling axis in Group 3 MBs.Subject terms: Cancer microenvironment, CNS cancer, Paediatric cancer  相似文献   

14.
We probed the ability of reverse lysate array technology to help explain potential differences in the responses of cancer cells to various small-molecule kinase inhibitors. To understand the antitumor potential of signal transduction inhibitors and their effects on signaling pathways downstream of Src, we used reverse lysate array technology to study SIG11293, a selective inhibitor of Src and LcK kinases, and AEE788, a selective inhibitor of Kdr (VEGFR1) and epidermal growth factor receptor/ErbB-2 that also has affinity for Src, c-abl, c-fms, and Flt-1. We observed the effects of drug dose on cell killing and expression and phosphorylation of various signal transduction proteins in MDA435 and MDA231 human breast cancer cells and U251HF glioblastoma cells. After 24 h, SIG11293 induced the least amount of cell killing in MDA435 cells; decreased Stat3(pY705) and Src(pY529) in all cell lines; decreased Src(pY418) and total Src in MDA231 and MDA435 cells, but not U251 cells; and in U251 cells, uniquely increased activated caspase 3, Src(pY418), panSrc, and p70S6K. AEE788 decreased Src(pY529) and Stat3(pY705) in U251HF and MDA435 cells. In regard to Src phosphorylation, both drugs decreased the negative regulatory site, Src (pY529), more than the positive regulatory site, Src(pY418), relative to total Src. These observations suggest that the two drugs have complex and different effects on Src signaling pathways. Although this general conclusion could be predicted, we believe that these studies exemplify the ability and robustness of reverse lysate arrays to measure signaling pathway modulation in tumor cells. Our hope is that these techniques will help to develop more robust preclinical and, eventually, clinical treatment paradigms.  相似文献   

15.
Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA disassembly and turnover. Expression of the Mgat5/galectin lattice alone induces FAs and cell spreading. However, FAK stabilization in FAs also requires expression of pY14Cav1. In cells lacking the Mgat5/galectin lattice, pY14Cav1 is not sufficient to promote FAK stabilization, FA disassembly, and turnover. In human MDA-435 cancer cells, Cav1 expression, but not mutant Y14FCav1, stabilizes FAK exchange and stimulates de novo FA formation in protrusive cellular regions. Thus, transmembrane crosstalk between the galectin lattice and pY14Cav1 promotes FA turnover by stabilizing FAK within FAs defining previously unknown, interdependent roles for galectin-3 and pY14Cav1 in tumor cell migration.  相似文献   

16.
Escherichia coli protein Y (pY) binds to the small ribosomal subunit and stabilizes ribosomes against dissociation when bacteria experience environmental stress. pY inhibits translation in vitro, most probably by interfering with the binding of the aminoacyl-tRNA to the ribosomal A site. Such a translational arrest may mediate overall adaptation of cells to environmental conditions. We have determined the 3D solution structure of a 112-residue pY and have studied its backbone dynamic by NMR spectroscopy. The structure has a betaalphabetabetabetaalpha topology and represents a compact two-layered sandwich of two nearly parallel alpha helices packed against the same side of a four-stranded beta sheet. The 23 C-terminal residues of the protein are disordered. Long-range angular constraints provided by residual dipolar coupling data proved critical for precisely defining the position of helix 1. Our data establish that the C-terminal region of helix 1 and the loop linking this helix with strand beta2 show significant conformational exchange in the ms- micro s time scale, which may have relevance to the interaction of pY with ribosomal subunits. Distribution of the conserved residues on the protein surface highlights a positively charged region towards the C-terminal segments of both alpha helices, which most probably constitutes an RNA binding site. The observed betaalphabetabetabetaalpha topology of pY resembles the alphabetabetabetaalpha topology of double-stranded RNA-binding domains, despite limited sequence similarity. It appears probable that functional properties of pY are not identical to those of dsRBDs, as the postulated RNA-binding site in pY does not coincide with the RNA-binding surface of the dsRBDs.  相似文献   

17.
The structure-activity relationships (SAR) of a novel class of Src SH2 inhibitors are described. Variation at the pY+1 and pY+3 side chain positions using 2,4- and 2,5-substituted thiazoles and 1,2,4-oxadiazoles as scaffolds resulted in inhibitors that bound as well as the standard tetrapeptide Ac-pYEEI-NH2.  相似文献   

18.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

19.
Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium pervanadate to boost the abundance of phosphorylation of the EGF receptor. Nine phosphorylation sites (pT669, pS967, pS1002, pY845, pY974, pY1045, pY1086, pY1148, and pY1173) of EGF receptor were quantified from EGF-stimulated cells in suspension and adherent conditions. Our data sets revealed that EGF stimulation of adherent cells induced higher levels of tyrosine phosphorylation relative to EGF stimulation of suspended cells. In contrast, EGF stimulation of adherent cells induced lower levels of serine and threonine phosphorylation relative to EGF stimulation of suspended cells. These findings are consistent with the hypothesis that cellular adhesion modulates phosphorylation of plasma membrane receptor tyrosine kinases relevant for EGF-induced signal transduction processes. Furthermore, our results suggest that strong phosphatase inhibitors should be used to generate reference datasets in comparative phosphoproteomics experiments.  相似文献   

20.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号