首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yearly and seasonal (rainy and dry seasons) variations of CH4 emission from a Sumatra paddy field were measured for 3 years. The mean CH4 emission rates during the growth period were in the range of 16.0–26.1 mg CH4 m-2 h-1 for the chemical fertilizer plots and 23.3–34.9 mg CH4 m-2 h-1 for the plots with rice straw application, respectively. The increase in the amounts of CH4 emission by rice straw application were from 1.3 to 1.6 times. There was no significant difference in the mean CH4 emission rates between rainy and dry seasons.Total amounts of CH4 emitted during the period of rice growth were in the ranges of 29.5–48.2 and 43.0–64.6 g CH4 m-2 for the plots applied with chemical fertilizer and those with rice straw application, respectively. Nearly the same amounts of CH4 were emitted in the first and second half of the growth period, irrespective of rice straw application.  相似文献   

2.
To attempt to develop physicochemical and physiological modelling for methane transport from the rhizosphere to the atmosphere through rice plants, methane flux, methane concentration in the soil water, and the biomass of rice were measured in lysimeter rice paddies (2.5 × 4 m, depth 2.0 m) once per week throughout the entire growing season in 1992 at Tsukuba, Japan. The addition of exogenous organic matter (rice straw) or soil amendments with the presence or absence of vegetation were also examined for their influence on methane emissions. The total methane emission over the growing season varied from 3.2 g CH4 m-2 y-1 without the addition of rice straw to 49.7 g CH4 m-2 y-1 with rice straw and microbiological amendment. In the unvegetated plot with the addition of rice straw, there was much ebullition of gas bubbles, particularly in the summer. The annual methane emission due to the ebullition of gas bubbles,from the unvegetated plot with the addition of rice straw was estimated to be almost the same as that from the vegetated site with the addition of rice straw. In the early growth stage, the methane flux can be analyzed by the diffusion model (Flux=Methane concentration × Conductance of rice body) using parameters for methane concentration in the soil water as a difference in concentration between the atmosphere and the rhizosphere, and for the biomass of rice as a conductance of rice body. On the other hand, although the diffusion model was inapplicable to a large extent from the middle to late growth stage, methane flux could be estimated by air temperature and concentration in the soil water. Thus, methane transport from the rhizosphere to the atmosphere through rice plants consisted of two phases: one was an explainable small part by diffusion in rice body; the other was a large part strongly, governed by air temperature. The existence of gas bubbles in the soil may be related to the transition between the two phases  相似文献   

3.
稻田秸秆还田:土壤固碳与甲烷增排   总被引:38,自引:0,他引:38  
基于我国农田土壤有机质长期定位试验和稻田甲烷排放试验成果,将全国稻田划分为单季区和双季区.根据土壤有机质试验数据,分析了秸秆还田在我国两个稻田区的单季稻田、水旱轮作稻田和双季稻田的固碳潜力.同时根据我国稻田甲烷排放试验数据,采用取平均排放系数的方法,估算了我国稻田在无秸秆还田情况下的甲烷排放总量;结合IPCC推荐的方法和参数,估算了我国稻田秸秆还田后甲烷排放总量及增排甲烷的全球增温潜势.结果表明:在中国稻田推广秸秆还田的固碳潜力为10.48TgC.a-1,对减缓全球变暖的贡献为38.43TgCO2-eqv.a-1;但秸秆还田后稻田甲烷排放将从无秸秆还田的5.796Tg.a-1增加到9.114Tg.a-1;秸秆还田引起甲烷增排3.318Tg.a-1,其全球增温潜势达82.95TgCO2-eqv.a-1,为土壤固碳减排潜力的2.158倍.可见,推广秸秆还田后,中国稻田增排甲烷的温室效应会大幅抵消土壤固碳的减排效益,是一项重要的温室气体泄漏.  相似文献   

4.
Elevated atmospheric CO2 (eCO2) generally increases carbon input in rice paddy soils and stimulates the growth of methane‐producing microorganisms. Therefore, eCO2 is widely expected to increase methane (CH4) emissions from rice agriculture, a major source of anthropogenic CH4. Agricultural practices strongly affect CH4 emissions from rice paddies as well, but whether these practices modulate effects of eCO2 is unclear. Here we show, by combining a series of experiments and meta‐analyses, that whereas eCO2 strongly increased CH4 emissions from paddies without straw incorporation, it tended to reduce CH4 emissions from paddy soils with straw incorporation. Our experiments also identified the microbial processes underlying these results: eCO2 increased methane‐consuming microorganisms more strongly in soils with straw incorporation than in soils without straw, with the opposite pattern for methane‐producing microorganisms. Accounting for the interaction between CO2 and straw management, we estimate that eCO2 increases global CH4 emissions from rice paddies by 3.7%, an order of magnitude lower than previous estimates. Our results suggest that the effect of eCO2 on CH4 emissions from rice paddies is smaller than previously thought and underline the need for judicious agricultural management to curb future CH4 emissions.  相似文献   

5.

Background and aims

The rice production is experiencing a shift from conventionally seedling-transplanted (TPR) to direct-seeded (DSR) cropping systems in Southeast Asia. Besides the difference in rice crop establishment, water regime is typically characterized as water-saving moist irrigation for DSR and flooding-midseason drainage-reflooding and moist irrigation for TPR fields, respectively. A field experiment was conducted to quantify methane (CH4) and nitrous oxide (N2O) emissions from the DSR and TPR rice paddies in southeast China.

Methods

Seasonal measurements of CH4 and N2O fluxes from the DSR and TPR plots were simultaneously taken by static chamber-GC technique.

Results

Seasonal fluxes of CH4 averaged 1.58 mg m?2 h?1 and 1.02 mg m?2 h?1 across treatments in TPR and DSR rice paddies, respectively. Compared with TPR cropping systems, seasonal N2O emissions from DSR cropping systems were increased by 49 % and 46 % for the plots with or without N application, respectively. The emission factors of N2O were estimated to be 0.45 % and 0.69 % of N application, with a background emission of 0.65 and 0.95 kg N2O-N ha?1 under the TPR and DSR cropping regimes, respectively. Rice biomass and grain yield were significantly greater in the DSR than in the TPR cropping systems. The net global warming potential (GWP) of CH4 and N2O emissions were comparable between the two cropping systems, while the greenhouse gas intensity (GHGI) was significantly lower in the DSR than in the TPR cropping systems.

Conclusions

Higher grain yield, comparable GWP, and lower GHGI suggest that the DSR instead of conventional TPR rice cropping regime would weaken the radiative forcing of rice production in terms of per unit of rice grain yield in China, and DSR rice cropping regime could be a promising rice development alternative in mainland China.  相似文献   

6.
The goals of sustainable food production and mitigation of greenhouse gas emissions may be in conflict when green manures are used in flooded rice systems. A field study was initiated in early spring 1992 near Sacramento, California to quantify the potential for enhanced methane emissions following a green manure amendment to rice. Replicate flux measurements were made twice a day every 3–4 days throughout the growing season in four treatment plots: burned rice straw, spring incorporated rice straw, burned straw plus purple vetch and spring incorporated straw plus vetch. Seasonal methane emissions ranged from 66–136 g CH4 m−2 and were 1.5 to 1.8 times higher from the straw plus vetch treatments relative to the straw only treatments. No significant differences in emissions were found between the two straw only treatments or the straw plus vetch treatments. Methane fluxes were exponentially related to soil temperature, but no effect of redox potential or floodwater depth were observed. The potential impact of these results on the global methane budget is discussed.  相似文献   

7.
Methane emission from a wetland rice field as affected by salinity   总被引:4,自引:0,他引:4  
The impact of salinity on CH4 emission was studied by adding salt to a Philippine rice paddy, increasing pore water EC to approx. 4 dS.m-1 Methane emission from the salt-amended plot and adjacent control plots was monitored with a closed chamber technique. The addition of salt to the rice field caused a reduction by 25% in CH4 emission. Rates of methane emissions from intact soil cores were measured during aerobic and anaerobic incubations. The anaerobic CH4 fluxes from the salt-amended soil cores were three to four times lower than from cores of the control plot, whereas the aerobic CH4 fluxes were about equal. Measurements of the potential CH4 production with depth showed that the CH4 production in the salt-amended field was strongly reduced compared to the control field. Calculation of the percentage CH4 oxidized of the anaerobic flux indicated that CH4 oxidation in the salt-amended plot was even more inhibited than CH4 production. The net result was about equal aerobic CH4 fluxes from both salt-amended plots and non-amended plots. The data illustrate the importance of both CH4 production and CH4 oxidation when estimating CH4 emission and show that the ratio between CH4 production and CH4 oxidation may depend on environmental conditions. The reduction in CH4 emission from rice paddies upon amendment with salt low in sulfate is considerably smaller than the reduction in CH4 emission observed in a similar study where fields were amended with high-sulfate containing salt (gypsum). The results indicate that CH4 emissions from wetland rice fields on saline, low-sulfate soils are lower than CH4 emissions from otherwise comparable non-saline rice tields. However, the reduction in CH4 emission is not proportional to the reduction in CH4 production  相似文献   

8.
Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m?2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measurements of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI‐COR LI‐7700 open‐path methane analyser, to measure field‐scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m?2 s?1, whereas those in the afternoon were above 100 nmol m?2 s?1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photosynthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m?2, equating to 134.3 g CO2 equivalents m?2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m?2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off‐site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep?1 yr?1, close to the published IPCC emission factor of 8 kg CH4 sheep?1 yr?1.  相似文献   

9.
Huang Y  Zhang W  Zheng X H  Han S H  Yu Y Q 《农业工程》2006,26(4):980-987
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

10.
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km×10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

11.
Residue management in cropping systems is believed to improve soil quality. However, the effects of residue management on methane (CH4) and nitrous oxide (N2O) emissions from paddy field in Southern China have not been well researched. The emissions of CH4 and N2O were investigated in double cropping rice (Oryza sativa L.) systems with straw returning of different winter cover crops by using the static chamber-gas chromatography technique. A randomized block experiment with three replications was established in 2004 in Hunan Province, China, including rice–rice–ryegrass (Lolium multiflorum L.) (Ry-R-R), rice–rice–Chinese milk vetch (Astragalus sinicus L.) (Mv-R-R) and rice–rice with winter fallow (Fa-R-R). The results showed that straw returning of winter crops significantly increased the CH4 emission during both rice growing seasons when compared with Fa-R-R. Ry-R-R plots had the largest CH4 emissions during the early rice growing season with 14.235 and 15.906 g m−2 in 2012 and 2013, respectively, when Ry-R-R plots had the largest CH4 emission during the later rice growing season with 35.673 and 38.606 g m−2 in 2012 and 2013, respectively. The Ry-R-R and Mv-R-R also had larger N2O emissions than Fa-R-R in both rice seasons. When compared to Fa-R-R, total N2O emissions in the early rice growing season were increased by 0.05 g m−2 in Ry-R-R and 0.063 g m−2 in Mv-R-R in 2012, and by 0.058 g m−2 in Ry-R-R and 0.068 g m−2 in Mv-R-R in 2013, respectively. Similar result were obtained in the late rice growing season, and the total N2O emissions were increased by 0.104 g m−2 in Ry-R-R and 0.073 g m−2 in Mv-R-R in 2012, and by 0.108 g m−2 in Ry-R-R and 0.076 g m−2 in Mv-R-R in 2013, respectively. The global warming potentials (GWPs) from paddy fields were ranked as Ry-R-R>Mv-R-R>Fa-R-R. As a result, straw returning of winter cover crops has significant effects on increase of CH4 and N2O emission from paddy field in double cropping rice system.  相似文献   

12.
Methane emissions from rice paddies were quantified by using an automatic field system stationed in Zhejiang Province, one of the centres for rice cultivation in China. The data set showed pronouned interannual variations over 5 consecutive vegetation periods; by computing average values of all experimental plots the annual emissions were 177 g CH4 m−2 yr−1 in 1987, 50 g CH4 m−2 yr−1 in 1988, and 187 g CH4 m−2 yr−1 in 1989. The field preparations encompassed 4 different treatments: (1) no fertilizers, (2) mineral fertilizer (KCl, K2SO4), (3) organic manure (rape seeed cake, animal manure), (4) mineral fertilizer plus organic manure. The methane emission rates of the different fertilizer treatments did not show significant differences. The mean emission rates, calculated over the entire observation period of 5 seasons, were 30.4 mg CH4 m−2 h−1 (non-fertilized plot) and 28.3 mg CH4 m−2 h−1 (mineral fertilizers). These values indicate a high level of methane production even without additional input of organic material into the rice-soils. In the other plots, the organic fertilizers were added once per vegetation period at app. 1 t fresh weight per ha, a relatively low application rate by agronomical standards. The mean emission rates were 35.1 mg CH4 m−2 h−1 when manure was applied as sole fertilizer and 27.5 mg CH4 m−2 h−1 when applied jointly with potassium fertilizers. Based on the results of this study we estimate a range of 18–28 Tg CH4 yr−1 as the total methane emission from Chinese rice fields. However, more field data from representative sites in China are needed to reduce the uncertainties in this estimate.  相似文献   

13.
A model developed by the authors ( Huang et al. 1998 ) was further validated against field measurements from various regions of the world and calibrated to estimate methane emission from irrigated rice cultivation of China. On the basis of available information on rice cultivated area, growth duration, grain yield, soil texture and temperature, methane emission from Chinese rice paddies was estimated for 28 rice cultivated provinces in mainland. The calculated daily methane emission rates, on a provincial scale, ranged from 0.15 to 0.86 g m–2 with an average of 0.32 g m–2. Five of the top six locations with higher daily methane emissions are located at a latitude between 28° and 31° N. A total amount of 9.66 Tg (1 Tg = 1012 g) CH4 per year, ranging from 7.19 to 13.62, was estimated to be released from Chinese rice paddy soils. Of the total, 45% is emitted from the single-rice growing season, and 19% and 36% are from the early-rice and the late-rice growing seasons, respectively. Approximately 70% of the total is emitted in the region located at latitude between 25° and 32° N. The emissions from rice fields in Sichuan and Hunan Province were calculated to be 2.85 Tg y–1, accounting for ≈ 30% of the total. Comparisons of the estimated and the observed emission rates show that the estimates were, in general, close to the measurements at most locations.  相似文献   

14.
Zhang Y  Su S  Zhang F  Shi R  Gao W 《PloS one》2012,7(1):e29156

Background

Rice paddies have been identified as major methane (CH4) source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of spatiotemporal patterns of CH4 emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels.

Methodology/Principal Findings

Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH4 emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CH4 fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the warming climate could enhance CH4 emission in the cool paddies.

Conclusions/Significance

The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory.  相似文献   

15.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   

16.
In northeastern Canada, at the ecotonal limit of the forest tundra and lichen woodland, a rise of the regional water table in the peatland systems was registered since Little Ice Age resulting in increasing pool compartment at the expense of terrestrial surfaces. We hypothesized that, with a mean water table closer to peat surface and higher pool density, these ecosystems would be great CH4 emitters. In summers 2009 and 2010, methane fluxes were measured in a patterned fen located in the northeastern portion of the La Grande river watershed to determine the contribution of the different microforms (lawns, hollows, hummocks, string, pools) to the annual CH4 budget. Mean seasonal CH4 fluxes from terrestrial microforms ranged between 12.9 and 49.4 mg m?2 day?1 in 2009 and 15.4 and 47.3 mg m?2 day?1 in 2010. Pool fluxes (which do not include ebullition fluxes) ranged between 102.6 and 197.6 mg CH4 m?2 day?1 in 2009 and 76.5 and 188.1 mg CH4 m?2 day?1 in 2010. Highest fluxes were measured in microforms with water table closer to peat surface but no significant relationship was observed between water table depth and CH4 fluxes. Spatially weighted CH4 budget demonstrates that, during the growing season, the studied peatland emitted 66 ± 31 in 2009 and 55 ± 26 mg CH4 m?2 day?1 in 2010, 79 % of which is accounted by pool fluxes. In a context where climate projections predict greater precipitations in northeastern Canada, these results indicate that this type of peatlands could contribute to modify the methane balance in the atmosphere.  相似文献   

17.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

18.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

19.
Emission of hydrogen from deep and shallow freshwater environments   总被引:1,自引:1,他引:0  
In-situ partial pressures of hydrogen in anoxic profundal lake sediments reached values of up to 5 Pa which were more than 5 orders of magnitude lower than the partial pressures of methane. Analysis of gas bubbles collected from anoxic submerged paddy soil showed H2 partial pressures in the range of 1.8 ± 1.3 Pa being ca. 4 orders of magnitude lower than the CH4 partial pressures. H2 emission rates, on the other hand, were less than 3 orders of magnitude lower than the CH4 emission rates indicating that H2 and CH4 were oxidized to a different extent in the rhizosphere of the soil before they reached the atmosphere, or that H2 was produced by the plants. More than 70% of the emitted H2 reached the atmosphere via plant-mediated flux. The rest was emitted via ebullition from the anoxic soil and, in addition, was produced in the paddy water. A significant amount of H2 was indeed found to be produced in the water under conditions where thallic algae and submerged parts of the rice plants produced oxygen by photosynthesis. Very little H2 was emitted via molecular diffusion through the paddy water; in addition, this amount was less than expected from the degree of supersaturation and the diffusional emission rate of CH4 indicating a relatively high rate of H2 consumption in the surface film of the paddy water. The total H2 source strength of rice paddies and other freshwater environments was estimated to be less than 1 Tg yr-1, being negligible in the atmospheric budget of H2.  相似文献   

20.
Singh  Smita  Kashyap  A.K.  Singh  J.S. 《Plant and Soil》1998,201(1):157-164
Influence of urea application on growth parameters (shoot height, and weight, root volume, weight and porosity; number of tillers; grain yield) and their relationship with methane (CH4) flux was investigated in Oryza sativa (var. Pant Dhan-4) under flooded soil condition. The study design consisted of (a) fertilized vegetated, (b) control vegetated, (c) fertilized bare, and (d) control bare plots. Crop growth and CH4 flux measurements were conducted from 9 to 115 days of rice transplanting at regular intervals of 10 days. Results showed that there were significant differences due to days (dates of measurement) and fertilization in all growth parameters except shoot height. Day × fertilization interaction was significant for all growth parameters. CH4 fluxes ranged from 0.4 to 20.2, 0.1 to 11.9, 0.09 to 2.2 and 0.004 to 1.5 mg m-2 h-1 under treatments (a), (b), (c) and (d), respectively. Maximum CH4 flux was recorded at the flowering stage. All the growth parameters, including number of tillers, showed strong positive relationship with total methane flux. Root porosity was also strongly correlated with total CH4 emission. It was concluded that CH4 emission was substantially influenced by crop phenology and growth, and fertilization. The study emphasizes the substrate production and conduit effects of rice plants on CH4 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号