首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
T ranslocon at the o uter envelope membrane of c hloroplasts, 34  kDa (Toc34) is a GTP-binding component of the protein import apparatus within the outer envelope membrane of plastids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc33 and atToc34. In this report, we describe the identification and characterization of two atToc34 knockout mutants, plastid protein import 3-1 ( ppi3-1 ) and ppi3-2 . Aerial tissues of the ppi3 mutants appeared similar to the wild type throughout development, and contained structurally normal chloroplasts that were able to efficiently import the Rubisco small subunit precursor (prSS) in vitro . The absence of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for atToc34 in the mutant, and the relatively high level of expression of the atTOC33 gene in these tissues. In the roots, where atTOC33 is expressed at a much lower level, significant growth defects were observed in both mutants: ppi3 roots were approximately 20–30% shorter than wild-type roots. Attempts to identify a double homozygote lacking atToc34 and atToc33 (by crossing the ppi3 mutants with ppi1 , an atToc33 knockout mutant) were unsuccessful, indicating that the function provided by atToc33/atToc34 is essential during early development. Plants that were homozygous for ppi1 and heterozygous for ppi3 displayed a chlorotic phenotype much more severe than that of the ppi1 single mutant. Furthermore, the siliques of these plants contained approximately 25% aborted seeds, indicating that the double homozygous mutation is embryo lethal. The data demonstrate that atToc33/atToc34 performs a central and essential role during plastid protein import, and indicate that the atToc34 isoform is relatively more important for plastid biogenesis in roots.  相似文献   

3.
Two different, essential Omp85 (Outer membrane protein, 85 kD)-related proteins exist in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts: Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD), encoded by atTOC75-III; and OEP80 (Outer Envelope Protein, 80 kD), encoded by AtOEP80/atTOC75-V. The atToc75-III protein is closely related to the originally identified pea (Pisum sativum) Toc75 protein, and it forms a preprotein translocation channel during chloroplast import; the AtOEP80 protein is considerably more divergent from pea Toc75, and its role is unknown. As knockout mutations for atTOC75-III and AtOEP80 are embryo lethal, we employed a dexamethasone-inducible RNA interference strategy (using the pOpOff2 vector) to conduct in vivo studies on the roles of these two proteins in older, postembryonic plants. We conducted comparative studies on plants silenced for atToc75-III (atToc75-III↓) or AtOEP80 (AtOEP80↓), as well as additional studies on a stable, atToc75-III missense allele (toc75-III-3/modifier of altered response to gravity1), and our results indicated that both proteins are important for chloroplast biogenesis at postembryonic stages of development. Moreover, both are important for photosynthetic and nonphotosynthetic development, albeit to different degrees: atToc75-III↓ phenotypes were considerably more severe than those of AtOEP80↓. Qualitative similarity between the atToc75-III↓ and AtOEP80↓ phenotypes may be linked to deficiencies in atToc75-III and other TOC proteins in AtOEP80↓ plants. Detailed analysis of atToc75-III↓ plants, by electron microscopy, immunoblotting, quantitative proteomics, and protein import assays, indicated that these plants are defective in relation to the biogenesis of both photosynthetic and nonphotosynthetic plastids and preproteins, confirming the earlier hypothesis that atToc75-III functions promiscuously in different substrate-specific import pathways.  相似文献   

4.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

5.
Yu TS  Li H 《Plant physiology》2001,127(1):90-96
Protein import into chloroplasts is mediated by a protein import apparatus located in the chloroplast envelope. Previous results indicate that there may be multiple import complexes in Arabidopsis. To gain further insight into the nature of this multiplicity, we analyzed the Arabidopsis ppi1 and ppi2 mutants, which are null mutants of the atToc33 and atToc159 translocon proteins, respectively. In the ppi2 mutant, in contrast to the extremely defective plastids in mesophyll cells, chloroplasts in guard cells still contained starch granules and thylakoid membranes. The morphology of root plastids in both mutants was similar to that in wild type. After prolonged light treatments, root plastids of both mutants and the wild type differentiated into chloroplasts. Enzymatic assays indicated that the activity of a plastid enzyme was reduced only in leaves but not in roots. These results indicated that both the ppi1 and ppi2 mutants had functional root and guard cell plastids. Therefore, we propose that import complexes are cell type specific rather than substrate or plastid specific.  相似文献   

6.
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis there are three PORs denoted PORA, PORB and PORC. The PORA and PORB genes are strongly expressed early in seedling development. In contrast to PORB the import of PORA into plastids of cotyledons is substrate-dependent and organ-specific. These differences in the import reactions between PORA and PORB most likely are due to different import mechanisms that are responsible for the uptake of these proteins. The two major core constituents of the translocon of the outer plastid envelope, Toc159 and Toc34, have been implicated in the binding and recognition of precursors of nuclear-encoded plastid proteins. Their involvement in conferring substrate dependency and organ specificity of PORA import was analyzed in intact Arabidopsis seedlings of wild type and the three mutants ppi3, ppi1 and ppi2 that are deficient in atToc34, atToc33, a closely related isoform of atToc34, and atToc159. Whereas none of these three Toc constituents is required for maintaining the organ specificity and substrate dependency of PORA import, atToc33 is indispensable for the import of PORB in cotyledons and true leaves suggesting that in these parts of the plant translocation of PORA and PORB occurs via two distinct import pathways. The analysis of PORA and PORB import into plastids of intact seedlings revealed an unexpected multiplicity of import routes that differed by their substrate, cell, tissue and organ specificities. This versatility of pathways for protein targeting to plastids suggests that in intact seedlings not only the constituents of the core complex of import channels but also other factors are involved in mediating the import of nuclear-encoded plastid proteins.  相似文献   

7.
Plastids represent a diverse group of organelles that perform essential metabolic and signaling functions within all plant cells. The differentiation of specific plastid types relies on the import of selective sets of proteins from among the approximately 2500 nucleus-encoded plastid proteins. The Toc159 family of GTPases mediates the initial targeting of proteins to plastids. In Arabidopsis thaliana, the Toc159 family consists of four genes: atTOC159, atTOC132, atTOC120, and atTOC90. In vivo analysis of atToc159 function indicates that it is required specifically for the import of proteins necessary for chloroplast biogenesis. In this report, we demonstrate that atToc120 and atToc132 represent a structurally and functionally unique subclass of protein import receptors. Unlike atToc159, mutants lacking both atToc120 and atToc132 are inviable. Furthermore, atToc120 and atToc132 exhibit preprotein binding properties that are distinct from atToc159. These data indicate that the different members of the Toc159 family represent distinct pathways for protein targeting to plastids and are consistent with the hypothesis that separate pathways have evolved to ensure balanced import of essential proteins during plastid development.  相似文献   

8.
The atToc33 protein is one of several pre‐protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis‐related pre‐proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild‐type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159‐deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.  相似文献   

9.
10.
Toc64/OEP64 was identified biochemically in pea as a putative component of the chloroplast protein import apparatus. In Arabidopsis, three paralogous genes (atTOC64-III, atTOC64-V and atTOC64-I) encode Toc64-related proteins, and these have been reported to localize in chloroplasts, mitochondria and the cytosol, respectively. To assess the role of the atToc64-III protein in chloroplast protein import in an in vivo context, we identified and characterized Arabidopsis knockout mutants. The absence of detectable defects in toc64-III single mutants raised the possibility of redundancy, and prompted us to also identify toc64-V and toc64-I mutants, cross them to toc64-III, and generate double- and triple-mutant combinations. The toc64 mutants were analysed carefully with respect to a variety of criteria, including chlorophyll accumulation, photosynthetic performance, organellar ultrastructure and chloroplast protein accumulation. In each case, the mutant plants were indistinguishable from wild type. Furthermore, the efficiency of chloroplast protein import was not affected by the toc64 mutations, even when a putative substrate of the atToc64-III protein (wheatgerm-translated precursor of the 33 kDa subunit of the oxygen-evolving complex, OE33) was examined. Moreover, under various stress conditions (high light, osmotic stress and cold), the toc64 triple-mutant plants were not significantly different from wild type. These results demonstrate that Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis, and draw into question the functional significance of this component.  相似文献   

11.
Toc75 (translocon at the outer envelope membrane of chloroplasts, 75 kD) is the protein translocation channel at the outer envelope membrane of plastids and was first identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (Arabidopsis thaliana) genome contains three Toc75-related sequences, termed atTOC75-I, atTOC75-III, and atTOC75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTOC75-III is strongly regulated and at its highest level in young, rapidly expanding tissues. By contrast, atTOC75-IV is expressed uniformly throughout development and at a much lower level than atTOC75-III. The third sequence, atTOC75-I, is a pseudogene that is not expressed due to a gypsy/Ty3 transposon insertion in exon 1, and numerous nonsense, frame-shift, and splice-junction mutations. The expressed genes, atTOC75-III and atTOC75-IV, both encode integral envelope membrane proteins. Unlike atToc75-III, the smaller atToc75-IV protein is not processed upon targeting to the envelope, and its insertion does not require ATP at high concentrations. The atTOC75-III gene is essential for viability, since homozygous atToc75-III knockout mutants (termed toc75-III) could not be identified, and aborted seeds were observed at a frequency of approximately 25% in the siliques of self-pollinated toc75-III heterozygotes. Homozygous toc75-III embryos were found to abort at the two-cell stage. Homozygous atToc75-IV knockout plants (termed toc75-IV) displayed no obvious visible phenotypes. However, structural abnormalities were observed in the etioplasts of toc75-IV seedlings and atTOC75-IV overexpressing lines, and toc75-IV plants were less efficient at deetiolation than wild type. These results suggest some role for atToc75-IV during growth in the dark.  相似文献   

12.
Toc159, a protein located in the outer envelope membrane and the cytosol, is an important component of the receptor complex for nuclear-encoded chloroplast proteins. We investigated the molecular mechanism of protein import into chloroplasts by atToc159 using the ppi2 mutant, which has a T-DNA insertion at atToc159, shows an albino phenotype, and does not survive beyond the seedling stage due to a defect in protein import into chloroplasts. First we established that transiently expressing atToc159 in protoplasts obtained from the white leaf tissues of ppi2 plants complements the protein import defect into chloroplasts. Using this transient expression approach and a series of deletion mutants, we demonstrated that the C-terminal membrane-anchored (M) domain is targeted to the chloroplast envelope membrane in ppi2 protoplasts, and is sufficient to complement the defect in protein import. The middle GTPase (G) domain plays an additional critical role in protein import: the atToc159[S/N] and atToc159[D/L] mutants, which have a mutation at the first and second GTP-binding motifs, respectively, do not support protein import into chloroplasts. Leaf cells of transgenic plants expressing the M domain in a ppi2 background contained nearly fully developed chloroplasts with respect to size and density of thylakoid membranes, and displayed about half as much chlorophyll as wild-type cells. In transgenic plants, the isolated M domain localized to the envelope membrane of chloroplasts but not the cytosol. Based on these results, we propose that the M domain is the minimal structure required to support protein import into chloroplasts, while the G domain plays a regulatory role.  相似文献   

13.
The majority of nucleus-encoded chloroplast proteins are targeted to the organelle by direct binding to two membrane-bound GTPase receptors, Toc34 and Toc159. The GTPase activities of the receptors are implicated in two key import activities, preprotein binding and driving membrane translocation, but their precise functions have not been defined. We use a combination of in vivo and in vitro approaches to study the role of the Toc159 receptor in the import reaction. We show that atToc159-A864R, a receptor with reduced GTPase activity, can fully complement a lethal insertion mutation in the ATTOC159 gene. Surprisingly, the atToc159-A864R receptor increases the rate of protein import relative to wild-type receptor in isolated chloroplasts by stabilizing the formation of a GTP-dependent preprotein binding intermediate. These data favor a model in which the atToc159 receptor acts as part of a GTP-regulated switch for preprotein recognition at the TOC translocon.  相似文献   

14.
NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.  相似文献   

15.
Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.  相似文献   

16.
Aronsson H  Combe J  Patel R  Jarvis P 《FEBS letters》2006,580(2):649-655
atToc33 is a transit peptide receptor of the chloroplast outer envelope membrane, and possesses GTPase activity. In vitro, its transit peptide- and GTP-binding properties are abrogated by its phosphorylation at serine 181, which was proposed to represent an important regulatory mechanism. We mutated S181 to alanine (to prevent phosphorylation), and to aspartate and glutamate (to mimic the effects of phosphoserine), and expressed all three proteins in ppi1 (atToc33 knockout) plants using the native promoter. The mutants complemented ppi1 with equal efficiency in respect of all criteria tested, including protein import efficiency and light stress tolerance. The data suggest that atToc33 phosphorylation may not play an important role in vivo.  相似文献   

17.
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.  相似文献   

18.
Two Arabidopsis Toc34 homologues, atToc34 and atToc33, components of the chloroplast protein import machinery located in the outer envelope membrane, were recently isolated. Both proteins insert into the outer envelope, are supposed to bind GTP and to interact with Toc75 as demonstrated by in vitro import assays. We studied the expression of the two genes by RNA gel blot analysis, promoter-GUS plants and in situ hybridisations as well as immunoblot analysis. The atToc34 and atToc33 genes are expressed in green as well as non-green tissues and are developmentally regulated. Despite these similarities, however, the two Arabidopsis Toc34 homologues are differentially expressed in various plant organs. To gain more insight into the in vivo function of both proteins, antisense plants were created. While antisense plants of atToc33 are characterized by a pale yellowish phenotype, antisense plants of atToc34 show a weaker phenotype. Protein interaction studies using an in vitro translated precursor protein and heterologously expressed atToc34 and atToc33 proteins showed a direct GTP-dependent interaction, but demonstrated different affinities of the two atToc proteins towards the precursor protein. Thus, our results indicate a more specialized function for both atToc34 and atToc33, suggesting specificity for certain imported precursor proteins.  相似文献   

19.
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.  相似文献   

20.
The Toc complex at the outer envelope of chloroplasts initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. The core of the Toc complex is composed of two receptor GTPases, Toc159 and Toc34, as well as Toc75, a beta-barrel membrane channel. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. In the present study, we used the Arabidopsis thaliana orthologs of Toc159 and Toc34, atToc159 and atToc33, respectively, to investigate the requirements for assembly of the trimeric Toc complex. In addition to its intrinsic GTPase activity, we demonstrate that integration of atToc159 into the Toc complex requires atToc33 GTPase activity. Additionally, we show that the interaction of the two GTPase domains stimulates association of the membrane anchor of atToc159 with the translocon. Finally, we employ reconstituted proteoliposomes to demonstrate that proper insertion of the receptor requires both Toc75 and Toc34. Collectively these data suggest that Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号