首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystalline ultrastructure and orientation of cellulose microfibrils in the cell wall of Valonia macrophysa were investigated by means of high-resolution electron microscopy of ultrathin (approx. 28 nm) sections. With careful selection of imaging conditions, ultrastructural aspects of the cell wall that had remained unresolved in previous studies were worked out by direct imaging of crystal lattice of cellulose microfibrils. It was confirmed that each microfibril is a single crystal having a lateral dimension of 20·20 nm2, because lattice images of 0.39 nm resolution were clearly recorded with no major disruption in the whole area of the cross section of the microfibril. There was no evidence for the existence of 3.5-nm elementary fibrils which have been considered to be basic crystallographic and morphological units of cellulose in general. It was also confirmed that the axial directions (crystallographic fiber direction) of adjacent microfibrils in each single lamella of the cell wall are opposite to each other.  相似文献   

2.
Yasutake Y  Kawano S  Tajima K  Yao M  Satoh Y  Munekata M  Tanaka I 《Proteins》2006,64(4):1069-1077
Previous studies have demonstrated that endoglucanase is required for cellulose biosynthesis both in bacteria and plants. However, it has yet to be elucidated how the endoglucanases function in the mechanism of cellulose biosynthesis. Here we describe the crystal structure of the cellulose biosynthesis-related endo-beta-1,47-glucanase (CMCax; EC 3.2.1.4) from the cellulose-producing Gramnegative bacterium, Acetobacter xylinum (= Gluconacetobacter xylinus), determined at 1.65-A resolution. CMCax falls into the glycoside hydrolase family 8 (GH-8), and the structure showed that the overall fold of the CMCax is similar to those of other glycoside hydrolases belonging to GH-8. Structure comparison with Clostridium thermocellum CelA, the best characterized GH-8 endoglucanase, revealed that sugar recognition subsite +3 is completely missing in CMCax. The absence of the subsite +3 leads to significant broadness of the cleft at the cellooligosaccharide reducing-end side. CMCax is known to be a secreted enzyme and is present in the culture medium. However, electron microscopic analysis using immunostaining clearly demonstrated that a portion of CMCax is localized to the cell surface, suggesting a link with other known membrane-anchored endoglucanases that are required for cellulose biosynthesis.  相似文献   

3.
The crystal structure of the Clostridium cellulovorans carbohydrate-binding module (CBM) belonging to family 17 has been solved to 1.7 A resolution by multiple anomalous dispersion methods. CBM17 binds to non-crystalline cellulose and soluble beta-1,4-glucans, with a minimal binding requirement of cellotriose and optimal affinity for cellohexaose. The crystal structure of CBM17 complexed with cellotetraose solved at 2.0 A resolution revealed that binding occurs in a cleft on the surface of the molecule involving two tryptophan residues and several charged amino acids. Thermodynamic binding studies and alanine scanning mutagenesis in combination with the cellotetraose complex structure allowed the mapping of the CBM17 binding cleft. In contrast to the binding groove characteristic of family 4 CBMs, family 17 CBMs appear to have a very shallow binding cleft that may be more accessible to cellulose chains in non-crystalline cellulose than the deeper binding clefts of family 4 CBMs. The structural differences in these two modules may reflect non-overlapping binding niches on cellulose surfaces.  相似文献   

4.
An extended enzymatic hydrolysis of cotton fibers by crude cellulase from Trichoderma pseudokoningii S-38 is described with characterization of both the enzyme changes of activities and cellulose structure. The hydrolysis rates declined drastically during the early stage and then slowly and steadily throughout the whole hydrolysis process the same trend could be seen during the following re-hydrolysis process. Morphological and structural changes to the fibers, such as swelling, frequent surface erosion, and variation in the packing and orientation of microfibrils, were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Observation of X-ray diffraction and IR spectra suggests that the hydrolysis process results in a gradual increase in the relative intensity of the hydrogen bond network, and a gradual decrease in the apparent crystal size of cellulose. The I(alpha) crystal phase was hydrolyzed more easily than was the I(beta) crystal phase. Apart from the inactivation of CBHs activity, changes in the packing and arrangement of microfibrils and the structural heterogeneity of cellulose during hydrolysis could be responsible for the reduction in the rate of reaction, especially in its later stages. The results indicate that the enzymatic hydrolysis of cellulose occurs on the outer layer of the fiber surface and that, following this, the process continues in a sub-layer manner.  相似文献   

5.
Crystalline features of cellulose microfibrils in the cell walls of Glaucocystis (Glaucophyta) were studied by combined spectroscopy and diffraction techniques, and the results were compared with those of Oocystis (Chlorophyta). Although these algae are grouped into two different classes, by the composition of their chloroplasts for instance, their cell walls are quite similar in size and morphology. The most striking features of their cellulose crystallites are that they have the highest cellulose I(alpha) contents reported to date. In particular, the I(alpha) fraction of cellulose from Glaucocystis was found to be as high as 90% from (13)C NMR analysis. The mode of preferential orientation of cellulose crystallites in their cell walls is also interesting; equatorial 0.53-nm lattice planes were oriented parallel to the cell surface in the case of Glaucocystis, while the 0.62-nm planes were parallel to the Oocystis cell surface. Such a structural variation provides another link to the evolution of cellulose structure, biosynthesis, and its biocrystallization mechanism.  相似文献   

6.
Liao Z  Huang Z  Hu H  Zhang Y  Tan Y 《Bioresource technology》2011,102(17):7953-7958
This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA.  相似文献   

7.
Individual cellulose macromolecules were successfully visualized on a highly oriented pyrolytic graphite (HOPG) surface by tapping-mode atomic force microscopy under ambient condition. Monomolecular-level dispersion of cellulose chains was achieved through the momentary contact of dilute cellulose/cupri-ethylenediamine (Cu-ED) solution onto the HOPG substrate. Both concentrations of cellulose and Cu-ED provided critical impacts on the topographical images. Single cellulose chains with molecular height of ca. 0.55 nm could be observed under the optimal conditions, showing rigid molecular rods with a unique morphology of hexagonal regularity. It was strongly suggested that the cellulose chains were aligned along the HOPG crystal lattice through a specific attraction, possibly due to a CH-pi interaction between the axial plane of cellulose and the HOPG pi-conjugated system. These phenomena would imply the potential applications of an HOPG substrate for not only nano-level imaging, but also for molecular alignment of cellulose and other structural polysaccharides.  相似文献   

8.
The assembly of the two major cell wall components, cellulose and lignin, were investigated at the atomistic scale using molecular dynamics simulations. To this end, a molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting different surfaces was considered to mimic the carbohydrate matrix present in native wood cell wall. The lignin model compound considered here is a threo guaiacyl beta-O-4 dimer. The dynamical process of adsorption of the lignin dimer onto the different surfaces of the cellulose crystal was examined. The modes of association between the two constituents were analyzed; energies of adsorption of the dimer are calculated favorable and of the same order of magnitude on all sides of the cellulosic model, suggesting that the deposition of lignin precursors onto cellulose fibers is non-specific from an enthalpic point of view. Interestingly, geometrical characteristics and energetical details of the adsorption are surface-dependent. Computed data have underlined the predominant contribution of van der Waals interactions for adsorption onto the (200) face, as well as the major influence of H-bonding interactions in the dynamical process of adsorption onto (110) and (1-10) faces. A large number of adsorption sites have been identified and a noticeable "flat" geometry of adsorption of the lignin dimer has been observed, as a consequence of the stacking interactions between lignin aromatic rings and C-H groups of cellulose. Importantly, these dispersive interactions lead to a preferential parallel orientation of lignin aromatic rings relative to the cellulose surface, notably on the (200) face. Such a parallel orientation is consistent with previously reported experimental observations.  相似文献   

9.
Up to now, experimental limitations have prevented researchers from achieving the molecular‐level understanding for the initial steps of the enzymatic hydrolysis of cellulose, where cellulase breaks down the crystal structure on the surface region of cellulose and exposes cellulose chains for the subsequent hydrolysis by cellulase. Because one of these non‐hydrolytic enzymatic steps could be the rate‐limiting step for the entire enzymatic hydrolysis of crystalline cellulose by cellulase, being able to analyze and understand these steps is instrumental in uncovering novel leads for improving the efficiency of cellulase. In this communication, we report an innovative application of the microcantilever technique for a real‐time assessment of the morphological change of cellulose induced by a treatment of sodium chloride. This sensitive nanomechanical approach to define changes in surface structure of cellulose has the potential to permit a real‐time assessment of the effect of the non‐hydrolytic activities of cellulase on cellulose and thereby to provide a comprehensive understanding of the initial steps of the enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2010;107: 190–194. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
The xyloglucan-cellulose assembly at the atomic scale   总被引:3,自引:0,他引:3  
Hanus J  Mazeau K 《Biopolymers》2006,82(1):59-73
The assembly of cell wall components, cellulose and xyloglucan (XG), was investigated at the atomistic scale using molecular dynamics simulations. A molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting a flexible complex external morphology was employed to mimic the cellulose microfibril. The xyloglucan molecules considered were the three typical basic repeat units, differing only in the size of one of the lateral chain. All the investigated XG fragments adsorb nonspecifically onto cellulose fiber; multiple arrangements are equally probable, and every cellulose surface was capable of binding the short XG molecules. The following structural effects emerged: XG molecules that do not have any long side chains tended to adapt themselves nicely to the topology of the microfibril, forming a flat, outstretched conformation with all the sugar residues interacting with the surface. In contrast, the XG molecules, which have long side chains, were not able to adopt a flat conformation that would enable the interaction of all the XG residues with the surface. In addition to revealing the fundamental atomistic details of the XG adsorption on cellulose, the present calculations give a comprehensive understanding of the way the XG molecules can unsorb from cellulose to create a network that forms the cell wall. Our revisited view of the adsorption features of XG on cellulose microfibrils is consistent with experimental data, and a model of the network is proposed.  相似文献   

11.
A series of molecular mechanics calculations were used to analyze the energetics for moving a single polysaccharide chain from the surface of microcrystalline cellulose into the binding cleft of the Cel5A cellulase from Acidothermus cellulolyticus. A build-up procedure was used to model the placement of a 12-residue oligosaccharide chain along the surface of the enzyme, using as a guide the four residues of the tetrasaccharide substrate co-crystallized with the protein in the crystallographic structure determination. The position of this 12-residue oligosaccharide was used to orient the enzyme properly above two different surfaces of cellulose 1beta, the (1,0,0) and the (1,1,0) faces of the crystal. Constrained molecular dynamics simulations were then used to pull a target chain directly below the enzyme up out of the crystal surface and into the binding groove. The energetics for this process were favorable for both faces, with the step face being more favorable than the planar face, implying that this surface could be hydrolyzed more readily.  相似文献   

12.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.  相似文献   

13.
Biodegradation of plant biomass is a slow process in nature, and hydrolysis of cellulose is also widely considered to be a rate-limiting step in the proposed industrial process of converting lignocellulosic materials to biofuels. It is generally known that a team of enzymes including endo- and exocellulases as well as cellobiases are required to act synergistically to hydrolyze cellulose to glucose. The detailed molecular mechanisms of these enzymes have yet to be convincingly elucidated. In this report, atomic force microscopy (AFM) is used to image in real-time the structural changes in Valonia cellulose crystals acted upon by the exocellulase cellobiohydrolase I (CBH I) from Trichoderma reesei. Under AFM, single enzyme molecules could be observed binding only to one face of the cellulose crystal, apparently the hydrophobic face. The surface roughness of cellulose began increasing after adding CBH I, and the overall size of cellulose crystals decreased during an 11-h period. Interestingly, this size reduction apparently occurred only in the width of the crystal, whereas the height remained relatively constant. In addition, the measured cross-section shape of cellulose crystal changed from asymmetric to nearly symmetric. These observed changes brought about by CBH I action may constitute the first direct visualization supporting the idea that the exocellulase selectively hydrolyzes the hydrophobic faces of cellulose. The limited accessibility of the hydrophobic faces in native cellulose may contribute significantly to the rate-limiting slowness of cellulose hydrolysis.  相似文献   

14.
Zhang J  Ma X  Yu J  Zhang X  Tan T 《Bioresource technology》2011,102(6):4585-4589
Four pretreatment processes including ionic liquids, steam explosion, lime, and dilute acid were used for enzymatic hydrolysis of sweet sorghum bagasse. Compared with the other three pretreatment approaches, steam-explosion pretreatment showed the greatest improvement on enzymatic hydrolysis of the bagasse. The maximum conversion of cellulose and the concentration of glucose obtained from enzymatic hydrolysis of steam explosion bagasse reached 70% and 25 g/L, respectively, which were both 2.5 times higher than those of the control (27% and 11 g/L). The results based on the analysis of SEM photos, FTIR, XRD and NMR detection suggested that both the reduction of crystallite size of cellulose and cellulose degradation from the Iα and Iβ to the Fibril surface cellulose and amorphous cellulose were critical for enzymatic hydrolysis. These pretreatments disrupted the crystal structure of cellulose and increased the available surface area, which made the cellulose better accessible for enzymatic hydrolysis.  相似文献   

15.
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis – a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5‐nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high‐resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM‐based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near‐native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.  相似文献   

16.
Crystalline features of cellulose microfibrils in the cell walls of Glaucocystis (Glaucophyta) were studied by combined spectroscopy and diffraction techniques, and the results were compared with those of Oocystis (Chlorophyta). Although these algae are grouped into two different classes, by the composition of their chloroplasts for instance, their cell walls are quite similar in size and morphology. The most striking features of their cellulose crystallites are that they have the highest cellulose Iα contents reported to date. In particular, the Iα fraction of cellulose from Glaucocystis was found to be as high as 90% from 13C NMR analysis. The mode of preferential orientation of cellulose crystallites in their cell walls is also interesting; equatorial 0.53-nm lattice planes were oriented parallel to the cell surface in the case of Glaucocystis, while the 0.62-nm planes were parallel to the Oocystis cell surface. Such a structural variation provides another link to the evolution of cellulose structure, biosynthesis, and its biocrystallization mechanism.  相似文献   

17.
Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ~10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.  相似文献   

18.
We prepared highly crystalline samples of a cellulose I-ethylenediamine (EDA) complex by immersing oriented films of algal (Cladophora) cellulose microcrystals in EDA at room temperature for a few days. The unit-cell parameters were determined to be a = 0.455, b = 1.133, and c = 1.037 nm (fiber repeat) and gamma = 94.02 degrees. The space group was P2(1). On the basis of unit cell, density, and thermogravimetry analyses, the asymmetric unit is composed of one anhydrous glucose residue and one EDA molecule. The chemical and thermal stabilities of the cellulose I-EDA complex were also investigated by the use of X-ray diffraction. When the cellulose I-EDA complex was immersed in methanol or water at room temperature, cellulose III I or I beta was obtained, respectively. However, immersion in a nonpolar solvent such as toluene did not affect the crystal structure of the complex. The cellulose I-EDA complex was stable up to a temperature of approximately 130 degrees C, whereas the boiling point of EDA is 117 degrees C. This thermal stability of the complex is probably caused by intermolecular hydrogen bonds between EDA molecules and cellulose. When heated above 150 degrees C, the cellulose I-EDA complex decomposed into cellulose I beta.  相似文献   

19.
W Han  M Tu  R Zeng  J Zhao  C Zhou 《Carbohydrate polymers》2012,90(3):1353-1361
Two types of polyurethane/liquid crystal (PU/LC) composite membranes with different LC contents, namely polyurethane/octyl hydroxypropyl cellulose ester (PU/OPC) and polyurethane/propyl hydroxypropyl cellulose ester (PU/PPC), were prepared and studied. The effects of surface properties on cell compatibility of the membranes were elucidated. PPC tended to assemble to independent phases in the composite membranes, while OPC formed uniformly distributed LC domains. As the introduction of LC, phase separation occurred, and the crystallization of PU was disrupted. The surface of PU/LC composite membranes showed fingerprint texture and two-phase morphology. Hydrophilicity of the two types of composite membranes exhibited a reversal tendency with the increase of LC contents. Cells seeded on the composite membranes presented favorable growth when the content of LC was over 30%, especially on PU/OPC complex. The surface morphology, phase separation between LC and PU as well as the type of LC showed significant effects on the cell behaviors.  相似文献   

20.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号