首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.  相似文献   

2.
3.
Thymocytes maturing in the thymus undergo clonal deletion/apoptosis when they encounter self- or allo-Ags presented by dendritic cells (DCs). How this occurs is a matter of debate, but NO may play a role given its ability of inducing apoptosis of these cells. APC (a mixed population of macrophages (Mphi) and DCs) from rat thymus expressed high levels of inducible NO synthase (iNOS) and produced large amounts of NO in basal conditions whereas iNOS expression and NO production were very low in thymocytes. Analysis by FACS and by double labeling of cytocentrifuged preparations showed that DCs and MPhi both express iNOS within APC. Analysis of a purified preparation of DCs confirmed that these cells express high levels of iNOS and produce large amounts of NO in basal conditions. The capacity of DCs to generate NO was enhanced by exposure to rat albumin, a self-protein, and required a fully expressed process of Ag internalization, processing, and presentation. Peptides derived from portions of class II MHC molecules up-regulate iNOS expression and NO production by DCs as well, both in self and allogeneic combinations, suggesting a role of NO in both self and acquired tolerance. We also found that NO induced apoptosis of rat double-positive thymocytes, the effect being more evident in anti-CD3-stimulated cells. Altogether, the present findings might suggest that DC-derived NO is at least one of the soluble factors regulating events, in the thymus, that follow recognition of self- and allo-Ags.  相似文献   

4.
The present study has been designed to pharmacologically expound the significance of inducible nitric oxide synthase in the pathophysiological progression of seizures using mouse models of chemically induced kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 days was used to elicit kindled seizure activity in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every 20 min until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration induced the development of severe form of kindled seizures in mice. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, treatment of aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase, markedly and dose dependently suppressed the development of both PTZ induced kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore inducible nitric oxide synthase may be implicated in the development of seizures.  相似文献   

5.
6.
Gamma delta T cells are early recruited into mycobacterial lesions. Upon microbial Ag recognition, gamma delta cells secrete cytokines and chemokines and undergo apoptosis via CD95/CD95 ligand (CD95L) interaction, possibly influencing the outcome of infection and the characteristics of the disease. In this paper we show that activated phagocytes acquire, upon challenge with Mycobacterium tuberculosis, the ability to inhibit M. tuberculosis-induced gamma delta cell apoptosis. Apoptosis protection was due to NO because it correlated with NO synthase (NOS)-2 induction and activity in scavenger cells and was abrogated by NOS inhibitors. Furthermore, the NO donor S-nitrosoacetylpenicillamine mimicked the effect of enzyme induction. NO left unaffected the expression of CD95 and CD95L, suggesting interference with an event ensuing CD95/CD95L interaction. NO was found to interfere with the intracellular accumulation of ceramide and the activation of caspases, which were involved in gamma delta T cells apoptosis after M. tuberculosis recognition. We propose that NO generated by infected macrophages determines the life span and therefore the function of lymphocytes at the infection site, thus linking innate and adaptive immunity.  相似文献   

7.
Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS). Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links it to the actin cytoskeleton. Phagosomes harboring live mycobacteria showed reduced capacity to retain EBP50, consistent with lower iNOS recruitment. EBP50 was found on purified phagosomes, and its expression increased upon macrophage activation, paralleling expression changes seen with iNOS. Overexpression of EBP50 increased while EBP50 knockdown decreased iNOS recruitment to phagosomes. Knockdown of EBP50 enhanced mycobacterial survival in activated macrophages. We tested another actin organizer, coronin-1, implicated in mycobacterium-macrophage interaction for contribution to iNOS exclusion. A knockdown of coronin-1 resulted in increased iNOS recruitment to model latex bead phagosomes but did not increase iNOS recruitment to phagosomes with live mycobacteria and did not affect mycobacterial survival. Our findings are consistent with a model for the block in iNOS association with mycobacterial phagosomes as a mechanism dependent primarily on reduced EBP50 recruitment.  相似文献   

8.
9.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

10.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

11.
We investigated the effects of the Th2-like cytokines IL-4 and IL-13 and of IL-10 on the induction of iNOS and NO production in rat eosinophils. Addition of mIL-4 to the eosinophil culture increased iNOS activity and nitrite production but did not improve the stimulatory effect of IFN-gamma and LPS. In contrast to eosinophils, addition of mIL-4 to macrophage cultures inhibited the iNOS expression and nitrite production induced by IFN-gamma plus LPS. Addition of mIL-13 to the eosinophil cultures did not significantly change iNOS activity and nitrite production in cells stimulated or not with IFN-gamma plus LPS. On the other hand, IL-13 inhibited iNOS activity in IFN-gamma plus LPS-stimulated macrophages. In the presence of IL-10, iNOS activity in non-stimulated eosinophil or macrophage cultures was not significantly altered, but the enzyme expression was inhibited in IFN-gamma plus LPS-stimulated eosinophils or macrophages. The production of nitrite by eosinophils stimulated by IFN-gamma plus LPS was inhibited by the presence of IL-10 in the medium. In conclusion, eosinophils might exhibit differential modulation of the L-arginine/iNOS pathway depending on the profile of Th2 cytokines produced during allergic diseases. IL-4 appears to be an important Th2 cytokine involved in the induction of the L-arginine/iNOS pathway in eosinophils.  相似文献   

12.
Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.  相似文献   

13.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

14.
We tested the hypotheses that 1) inducible nitric oxide synthase (iNOS) mediates ozone (O3)-induced lung hyperpermeability and 2) mRNA levels of the gene for iNOS (Nos2) are modulated by Toll-like receptor 4 (Tlr4) during O3 exposure. Pretreatment of O3-susceptible C57BL/6J mice with a specific inhibitor of total NOS (N(G)-monomethyl-L-arginine) significantly decreased the mean lavageable protein concentration (a marker of lung permeability) induced by O3 (0.3 parts/million for 72 h) compared with vehicle control mice. Furthermore, lavageable protein in C57BL/B6 mice with targeted disruption of Nos2 [Nos2(-/-)] was 50% less than the protein in wild-type [Nos2(+/+)] mice after O3. To determine whether Tlr4 modulates Nos2 mRNA levels, we studied C3H/HeJ (HeJ) and C3H/HeOuJ mice that differ only at a missense mutation in Tlr4 that confers resistance to O3-induced lung hyperpermeability in the HeJ strain. Nos2 and Tlr4 mRNA levels were significantly reduced and correlated in resistant HeJ mice after O3 relative to those in susceptible C3H/HeOuJ mice. Together, the results are consistent with an important role for iNOS in O3-induced lung hyperpermeability and suggest that Nos2 mRNA levels are mediated through Tlr4.  相似文献   

15.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

16.
Regulation of cell proliferation by thyroid hormone (TH) has been demonstrated, but the effect of THs and the mechanisms involved in lymphocyte activity have not been elucidated. Differential expression of PKC isoenzymes and high nitric oxide synthase (NOS) activity have been described in tumor T lymphocytes. We have analyzed the direct actions of TH on normal T lymphocytes and BW5147 T lymphoma cells in relation to PKC and NOS activities. THs increased tumor and mitogen-induced normal T lymphocyte proliferation. PKC isoenzyme-selective blockers impaired these effects in both cell types, indicating the participation of Ca2+-dependent and -independent isoenzymes in normal and tumor cells, respectively. TH actions were blunted by extra- and intracellular Ca2+ blockers only in normal T lymphocytes, whereas NOS blockers impaired TH-induced proliferation in T lymphoma cells. Incubation for 24 h with TH induced a rise in total and membrane-associated PKC activities in both cell types and led to a rapid and transient effect only in tumor cells. THs increased atypical PKC-zeta expression in BW5147 cells and classical PKC isoenzymes in mitogen-stimulated normal T cells. TH augmented NOS activity and inducible NOS protein and gene expression only in tumor cells. Blockade of PKC and the atypical PKC-zeta isoform inhibited TH-mediated stimulation of inducible NOS and cell proliferation. These results show, for the first time, that differential intracellular signals are involved in TH modulation of lymphocyte physiology and pathophysiology.  相似文献   

17.
A ferric heme-nitric oxide (NO) complex can build up in mouse inducible nitric oxide synthase (iNOS) during NO synthesis from L-arginine. We investigated its formation kinetics, effect on catalytic activity, dependence on solution NO concentration, and effect on enzyme oxygen response (apparent KmO2). Heme-NO complex formation was biphasic and was linked kinetically to an inhibition of electron flux and catalysis in iNOS. Experiments that utilized a superoxide generating system to scavenge NO showed that the magnitude of heme-NO complex formation directly depended on the NO concentration achieved in the reaction solution. However, a minor portion of heme-NO complex (20%) still formed during NO synthesis even when solution NO was completely scavenged. Formation of the intrinsic heme-NO complex, and the heme-NO complex related to buildup of solution NO, increased the apparent KmO2 of iNOS by 10- and 4-fold, respectively. Together, the data show heme-NO complex buildup in iNOS is due to both intrinsic NO binding and to equilibrium binding of solution NO, with the latter predominating when NO reaches high nanomolar to low micromolar concentrations. This behavior distinguishes iNOS from the other NOS isoforms and indicates a more complex regulation is possible for its activity and oxygen response in biologic settings.  相似文献   

18.
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer''s disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1–11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.  相似文献   

19.
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808–3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 and 35 ± 3 s−1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号