首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(6):874-875
The role of early endosomes in the maturation of autophagosomes and autophagy has been inferred from morphological data accumulated in several cell models. Through the inhibition of early endosome function, by loss of COPI using siRNA depletion, we have found that early endosomes, and fusion of autophagosomes with functional early endosomes are essential for autophagy. Our results support the sequential, stepwise maturation of autophagosomes via fusion with the early endosomes, late endosomes and lysosomal compartments.  相似文献   

2.
During autophagy, double-membrane autophagosomes deliver sequestered cytoplasmic content to late endosomes and lysosomes for degradation. The molecular mechanism of autophagosome maturation is still poorly characterized. The small GTPase Rab11 regulates endosomal traffic and is thought to function at the level of recycling endosomes. We show that loss of Rab11 leads to accumulation of autophagosomes and late endosomes in Drosophila melanogaster. Rab11 translocates from recycling endosomes to autophagosomes in response to autophagy induction and physically interacts with Hook, a negative regulator of endosome maturation. Hook anchors endosomes to microtubules, and we show that Rab11 facilitates the fusion of endosomes and autophagosomes by removing Hook from mature late endosomes and inhibiting its homodimerization. Thus induction of autophagy appears to promote autophagic flux by increased convergence with the endosomal pathway.  相似文献   

3.
Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential. We show that fusion of AVs with functional early endosomes is required for autophagy. Inhibition of early endosome function by loss of COPI subunits (β′, β, or α) results in accumulation of autophagosomes, but not an increased autophagic flux. COPI is required for ER-Golgi transport and early endosome maturation. Although loss of COPI results in the fragmentation of the Golgi, this does not induce the formation of autophagosomes. Loss of COPI causes defects in early endosome function, as both transferrin recycling and EGF internalization and degradation are impaired, and this loss of function causes an inhibition of autophagy, an accumulation of p62/SQSTM-1, and ubiquitinated proteins in autophagosomes.  相似文献   

4.
《Autophagy》2013,9(5):676-689
Autophagy is a highly conserved degradative pathway whereby a double membrane engulfs cytoplasmic constituents to form an autophagic vacuole or autophagosome. An essential requirement for efficient autophagy is the acquisition of an adequate degradative capacity by the autophagosomes. To acquire this capacity the immature autophagic vacuoles (AVis) obtain lysosomal hydrolases by fusion with endosomes. The current models suggest that at least two types of endosomes, early and late, fuse with AVis to form mature, degradative AVds. This fusion and maturation requires proteins also involved in endosome maturation such as Rab7. However, it is not known if there are molecular requirements unique to AVi-endosome fusion. To identify and investigate the molecular requirements of this fusion we developed a cell-free fusion assay based on content mixing, which occurs after fusion of isolated AVis and different endosomal fractions. Our assay shows that isolated AVis can fuse to a similar extent in vitro with both early and late endosomes. Furthermore, fusion between autophagosomes and endosomes requires cytosolic and endosomal proteins, but does not show a nucleotide-dependence, and is partially N-ethylmaleimide sensitive. We also demonstrate that the lipidated form of the autophagosomal protein LC3 is dispensable for this fusion event.  相似文献   

5.
6.
《Autophagy》2013,9(2):290-291
ATG5 and ATG7 are considered as essential molecules for induction of macroautophagy. However, we found that cells lacking ATG5 or ATG7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stresses. Although lipidation of LC3 is accepted to be a good indicator of macroautophagy, it did not occur during the ATG5/ATG7-independent alternative macroautophagy. Unlike conventional macroautophagy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of the phagophore with vesicles derived from the trans-Golgi and late endosomes. Mammalian macroautophagy can occur via at least two different pathways, which are an ATG5/ATG7-dependent conventional pathway and an ATG5/ATG7-independent alternative pathway.  相似文献   

7.
Different mechanisms for delivery of intracellular components (proteins and organelles) to lysosomes and late endosomes for degradation co-exist in almost all cells and set the basis for distinct autophagic pathways. Cargo can be sequestered inside double-membrane vesicles (or autophagosomes) and reach the lysosomal compartment upon fusion of these vesicles to lysosomes through macroautophagy. In a different type of autophagy, known as chaperone-mediated autophagy (CMA), single individual soluble proteins can be targeted one by one to the lysosomal membrane and translocated into the lumen for degradation. Direct sequestration of proteins and organelles by invaginations at the lysosomal membrane that pinch off into the lumen has also been proposed. This process, known as microautophagy, remains poorly understood in mammalian cells. In our recent work, we demonstrate the occurrence of both "in bulk" and "selective" internalization of cytosolic components in late endosomes and identify some of the molecular players of this process that we have named endosomalmicroautophagy (e-MI) due to its resemblance to microautophagy.  相似文献   

8.
Wang J  Ding Y  Wang J  Hillmer S  Miao Y  Lo SW  Wang X  Robinson DG  Jiang L 《The Plant cell》2010,22(12):4009-4030
The exocyst protein complex mediates vesicle fusion with the plasma membrane. By expressing an (X)FP-tagged Arabidopsis thaliana homolog of the exocyst protein Exo70 in suspension-cultured Arabidopsis and tobacco (Nicotiana tabacum) BY-2 cells, and using antibodies specific for Exo70, we detected a compartment, which we term EXPO (for exocyst positive organelles). Standard markers for the Golgi apparatus, the trans-Golgi network/early endosome, and the multivesicular body/late endosome in plants do not colocalize with EXPO. Inhibitors of the secretory and endocytic pathways also do not affect EXPO. Exo70E2-(X)FP also locates to the plasma membrane (PM) as discrete punctae and is secreted outside of the cells. Immunogold labeling of sections cut from high-pressure frozen samples reveal EXPO to be spherical double membrane structures resembling autophagosomes. However, unlike autophagosomes, EXPOs are not induced by starvation and do not fuse with the lytic compartment or with endosomes. Instead, they fuse with the PM, releasing a single membrane vesicle into the cell wall. EXPOs are also found in other cell types, including root tips, root hair cells, and pollen grains. EXPOs therefore represent a form of unconventional secretion unique to plants.  相似文献   

9.
Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1‐deficient zebrafish mutant, nrca14. We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate because of a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrca14 cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5'phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrca14 cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.  相似文献   

10.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

11.
《Autophagy》2013,9(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

12.
Acinus     
《Autophagy》2013,9(7):974-975
Fusion with lysosomes is the common last step of endocytic trafficking and autophagy. Accordingly, several proteins are required in both pathways for cargoes to reach their destinations. Among these proteins, Drosophila Acinus stands out, as it exerts opposite effects on these two pathways, and thus establishes a new paradigm. Loss of Acinus function destabilizes early endosomes, thereby promoting the delivery of their cargo to lysosomes. By contrast, the maturation of autophagosomes to autolysosomes is inhibited in acn mutant cells. The increase in autophagy upon Acinus overexpression and its location to the nucleus are consistent with Acinus being a novel regulator of autophagy.  相似文献   

13.
We investigated the trafficking of Burkholderia cenocepacia, an opportunistic respiratory pathogen of persons with cystic fibrosis (CF), in immortalized CF airway epithelial cells in vitro. Our results indicate that bacteria enter cells in a process involving actin rearrangement. Whereas both live and heat-killed bacteria reside transiently in early endosomes, only live bacteria escape from late endosomes to colocalize in vesicles positive for lysosomal membrane marker LAMP1, endoplasmic reticulum (ER) membrane marker calnexin, and autophagosome marker monodansylcadavarine (MDC). Twenty-four hours after infection, microcolonies of live bacteria were observed in the perinuclear area colocalizing with calnexin. In contrast, after ingestion, dead bacteria colocalized with late endosome marker Rab7, and lysosome markers LAMP1 and cathepsin D, but not with calnexin or MDC. Six to eight hours after ingestion of dead bacteria, degraded bacterial particles were observed in the cytoplasm and in vesicles positive for cathepsin D. These results indicate that live B. cenocepacia gain entry into human CF airway cells by endocytosis, escape from late endosomes to enter autophagosomes that fail to fuse with mature lysosomes, and undergo replication in the ER. This survival and replication strategy may contribute to the capacity of B. cenocepacia to persist in the lungs of infected CF patients.  相似文献   

14.
Ganley IG  Wong PM  Jiang X 《Autophagy》2011,7(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

15.
Late endosomes derive from early endosomes by maturation.   总被引:34,自引:0,他引:34  
Endocytosed proteins destined for degradation in lysosomes are targeted mainly to early endosomes following uptake. Late endosomes are the major site for entry of newly synthesized lysosomal hydrolases via the cation-independent mannose 6-phosphate receptor into the degradative pathway. No consensus exists as to the mechanism of transport from early to late endosomes. We used asialoorosomucoid and transferrin to label selected parts of the degradative and receptor-recycling pathways, respectively, in the human hepatoma cell line HepG2. Intracellular mixing of sequentially endocytosed 125I- and HRP-labeled ligands was monitored by using 3,3'-diaminobenzidine-mediated density perturbation. The entire endocytic pathway of asialoorosomucoid, except for the lysosomes, remained fully accessible to subsequently endocytosed transferrin conjugated to HRP with unchanged kinetics. These results together with immunoelectron microscopic data support a model in which early endosomes gradually mature into late endosomes.  相似文献   

16.
Suzanne R. Pfeffer 《FEBS letters》2009,583(23):3811-913
Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated.  相似文献   

17.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

18.
布鲁氏菌胞内生存机制研究进展   总被引:2,自引:0,他引:2  
布鲁氏菌是一种胞内寄生菌,可以在专业和非专业吞噬细胞内生存和复制。当布鲁氏菌与细胞接触时,细菌可以通过受体分子进入细胞。布鲁氏菌在细胞内首先定位于早期吞噬体,然后,在胞内改变其运输方向,最终抵达其胞内复制部位内质网,开始大量复制。这种复制既不影响细胞的基本功能,也不诱导细胞的损伤。主要综述了布鲁氏菌对细胞的侵袭、胞内运输和复制的相关研究进展。  相似文献   

19.
In PC12 neuroendocrine cells, synaptic-like microvesicles (SLMV) are thought to be formed by two pathways. One pathway sorts the proteins to SLMV directly from the plasma membrane (or a specialized domain thereof) in an adaptor protein complex 2-dependent, brefeldin A (BFA)-insensitive manner. Another pathway operates via an endosomal intermediate, involves adaptor protein complex 3, and is BFA sensitive. We have previously shown that when expressed in PC12 cells, HRP-P-selectin chimeras are directed to SLMV mostly via the endosomal, BFA-sensitive route. We have now found that two endosomal intermediates are involved in targeting of HRP-P-selectin chimeras to SLMV. The first intermediate is the early, transferrin-positive, epidermal growth factor-positive endosome, from which exit to SLMV is controlled by the targeting determinants YGVF and KCPL, located within the cytoplasmic domain of P-selectin. The second intermediate is the late, transferrin-negative, epidermal growth factor-positive late endosome, from where HRP-P-selectin chimeras are sorted to SLMV in a YGVF- and DPSP-dependent manner. Both sorting steps, early endosomes to SLMV and late endosomes to SLMV, are affected by BFA. In addition, analysis of double mutants with alanine substitutions of KCPL and YGVF or KCPL and DPSP indicated that chimeras pass sequentially through these intermediates en route both to lysosomes and to SLMV. We conclude that a third site of formation for SLMV, the late endosomes, exists in PC12 cells.  相似文献   

20.
Bafilomycin A(1) (BAF) and concanamycin A (ConcA) are selective inhibitors of the H(+)-ATPases of the vacuolar system. We have examined the effects of these inhibitors on different steps in endocytic pathways in rat hepatocytes, using [(125)I]tyramine-cellobiose-labeled asialoorosomucoid ([(125)I]TC-AOM) and [(125)I]tyramine-cellobiose-labeled bovine serum albumin ([(125)I]TC-BSA) as probes for respectively receptor-mediated endocytosis and pinocytosis (here defined as fluid phase endocytosis). The effects of BAF and ConcA were in principle identical, although ConcA was more effective than BAF. The main findings were as follows. (1) BAF/ConcA reduced the rate of uptake of both [(125)I]TC-AOM and [(125)I]TC-BSA. The reduced uptake of [(125)I]TC-AOM was partly due to a redistribution of the asialoglycoprotein receptors (ASGPR) such that the number of surface receptors was reduced approximately 40% without a change in the total number of receptors. (2) BAF/ConcA at the same time increased retroendocytosis (recycling) of both probes. The increased recycling of the ligand ([(125)I]TC-AOM) is partly a consequence of the enhanced pH in endosomes, which prevents dissociation of ligand. (3) It was furthermore found that the ligand remained bound to the receptor in presence of BAF/ConcA and that the total amount of ligand molecules internalized in BAF/ConcA-treated cells was only slightly in excess of the total number of receptors. These data indicate that reduced pH in endosomes is the prime cause of receptor inactivation and release of ligand in early endosomes. (4) Subcellular fractionation experiments showed that [(125)I]TC-AOM remained in early endosomes, well separated from lysosomes in sucrose gradients. The fluid phase marker, [(125)I]TC-BSA, on the other hand, seemed to reach a later endosome in the BAF/ConcA-treated cells. This organelle coincided with lysosomes in the gradient, but hypotonic medium was found to selectively release a lysosomal enzyme (beta-acetylglucosaminidase), indicating that even [(125)I]TC-BSA remained in a prelysosomal compartment in the BAF/ConcA-treated cells. (5) Electron microscopy using horseradish peroxidase (HRP) as a fluid phase marker verified that BAF/ConcA inhibited transfer of material from late endosomes ('multivesicular bodies'). (6) BAF/ConcA led to accumulation of lactate dehydrogenase (LDH) in autophagic vacuoles, but although the drugs partly inhibited fusion between autophagosomes and lysosomes a number of autolysosomes was formed in the presence of BAF/ConcA. This observation explains the reduced buoyant density of lysosomes (revealed in sucrose density gradients). In conclusion, BAF/ConcA inhibit transfer of endocytosed material from late endosomes to lysosomes, but do not at the same time prevent fusion between autophagosomes and lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号