首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The addition of extracellular ATP (exATP) to four Streptomyces strains had similar effects: low exATP levels stimulated antibiotic production and high levels reduced it. Compared with antibiotic production, the concentrations of intracellular ATP (inATP) in the tested strains were opposite, which suggests a role of inATP in regulating secondary metabolite production. Under inactivation of the polyphosphate kinase gene (ppk) in Streptomyces lividans, we observed the same results: when the inATP level in the mutant strain was lower than in the parent strain, more antibiotic was produced. Combining all the results, a strong inverse relationship between [inATP] and the secondary metabolite production is suggested by this study.  相似文献   

2.
3.
The regulatory function of extracellular ATP (exATP) in bacteria is unknown, but recent studies have demonstrated exATP induced enhanced secondary metabolite production and morphological differentiation in Streptomyces coelicolor. The growth of Streptomyces coelicolor, however, was unaffected by exATP, although changes in growth are common phenotypes. To identify bacteria whose growth is altered by exATP, we measured exATP-induced population changes in fast-growing microbes and actinomycetes in compost. Compared with the water-treated control, the addition of 10 ml 100 μM ATP to 10 g of compost enhanced the actinomycetes population by 30% and decreased fast-growing microbial numbers by 20%. Eight microbes from each group were selected from the most populated colony, based on appearance. Of the eight isolated fast-growing microbes, the 16S rRNA sequences of three isolates were similar to the plant pathogens Serratia proteamaculans and Sphingomonas melonis, and one was close to a human pathogen, Elizabethkingia meningoseptica. The growth of all fast-growing microbes was inhibited by ATP, which was confirmed in Pseudomonas syringae DC3000, a pathogenic plant bacterium. The growth of six of eight isolated actinomycetes strains, all of which were identified as close to Streptomyces neyagawaensis, was enhanced by ATP treatment. This study suggests that exATP regulates bacterial physiology and that the exATP response system is a target for the control of bacterial ecology.  相似文献   

4.
Regulation of biosynthesis of secondary metabolites   总被引:5,自引:0,他引:5  
The ATP concentration was measured by the luciferase method during cultivation of two strains ofStreptomyces aureofaciens (a low-production and a production strain) producing chlortetracycline. The intracellular ATP concentration was found to be much higher in the low-production strain than in the production strain. The role of ATP in regulatory mechanisms is discussed in relation to the biosynthesis of the antibiotic.  相似文献   

5.
The possible role of some metabolic systems producing acetyl-CoA, and methylmalonyl-CoA as initial precursors in the biosynthesis of the macrolide antibiotic A 6599 by Streptomyces hygroscopicus JA 6599 was studied. The activities of pyruvate decarboxylase exceeded in two higher producing strains about twofold those found in the mycelium of a lower producing one suggesting that in this organism an enhanced production of acetyl-CoA should be one of the prerequisites necessary for an improved antibiotic biosynthesis. No clear interrelationship was established, however, between the biosynthesis of the secondary metabolite A 6599 on the one hand and the acetate and propionate kinase content on the other hand. In S. hygroscopicus JA 6599 the carboxylation of acetyl-CoA or propionyl-CoA seems to be the major pathway giving malonyl-CoA or methylmalonyl-CoA, respectively. Thus, the activities of acetyl-CoA and propionyl-CoA carboxylases corresponded with both the levels of antibiotic production in several strains and with variations observed in the specific antibiotic production rate during the cultivation. Some other pathways synthesizing these precursors, e.g. via oxaloacetate, are assumed to be negligible since even in the mycelium of the lower producing strain increased activities of phosphoenolpyruvate carboxylase were present.  相似文献   

6.
ABSTRACT: BACKGROUND: Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. RESULTS: None of the fifteen Streptomyces isolates inhibited all seven tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of only one of the tested fungi, the mycorrhiza-forming fungus Laccaria bicolor, was stimulated by the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. CONCLUSIONS: Our results show that the primary characteristic of mycorrhiza associated streptomycetes is to inhibit the growth of fungi and bacteria. In parallel, our study indicates that Streptomyces strains which are not general antagonists may produce previously un-described metabolites.  相似文献   

7.
Liu  Xiaocao  Zheng  Guosong  Wang  Gang  Jiang  Weihong  Li  Lei  Lu  Yinhua 《中国科学:生命科学英文版》2019,62(11):1492-1505
Cyclic dimeric GMP(c-di-GMP) has emerged as the nucleotide second messenger regulating both development and antibiotic production in high-GC, Gram-positive streptomycetes. Here, a diguanylate cyclase(DGC), CdgD, encoded by SCO5345 from the model strain Streptomyces coelicolor, was functionally identified and characterized to be involved in c-di-GMP synthesis through genetic and biochemical analysis. cdgD overexpression resulted in significantly reduced production of actinorhodin and undecylprodigiosin, as well as completely blocked sporulation or aerial mycelium formation on two different solid media. In the cdgD-overexpression strain, intracellular c-di-GMP levels were 13-27-fold higher than those in the wild-type strain. In vitro enzymatic assay demonstrated that CdgD acts as a DGC, which could efficiently catalyze the synthesis of c-di-GMP from two GTP molecules. Heterologous overproduction of cdgD in two industrial Streptomyces strains could similarly impair developmental transitions as well as antibiotic biosynthesis. Collectively, our results combined with previously reported data clearly demonstrated that c-di-GMP-mediated signalling pathway plays a central and universal role in the life cycle as well as secondary metabolism in streptomycetes.  相似文献   

8.
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.  相似文献   

9.
Deletion of scbA enhances antibiotic production in Streptomyces lividans   总被引:2,自引:0,他引:2  
Antibiotic production in many streptomycetes is influenced by extracellular gamma-butyrolactone signalling molecules. In this study, the gene scbA, which had been shown previously to be involved in the synthesis of the gamma-butyrolactone SCB1 in Streptomyces coelicolor A3(2), was deleted from the chromosome of Streptomyces lividans 66. Deletion of scbA eliminated the production of the antibiotic stimulatory activity previously associated with SCB1 in S. coelicolor. When the S. lividans scbA mutant was transformed with a multi-copy plasmid carrying the gene encoding the pathway-specific activator for either actinorhodin or undecylprodigiosin biosynthesis, production of the corresponding antibiotic was elevated significantly compared to the corresponding scbA(+) strain carrying the same plasmid. Consequently, deletion of scbA may be useful in combination with other strategies to construct host strains capable of improved bioactive metabolite production.  相似文献   

10.
11.
Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2) strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and 13C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.  相似文献   

12.
The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 μM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M(1), and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.  相似文献   

13.
The cultivation of strains of the genus Streptosporangium in batch fermentations demonstrated that the optimal conditions for secondary metabolite production are completely different to those of the closely related genus Streptomyces. The dissolved oxygen tension (pO(2)) was identified as an important parameter for optimal production of secondary metabolites in submerged cultures. Extreme variations of this parameter by changes in aeration (gas flow), agitation system and stirrer speed showed a tremendous impact in production yields of all investigated strains. Finally, a 20-fold increase in productivity was observed by conditions of controlled oxygen excess compared to optimal fermentation conditions for Streptomyces strains.  相似文献   

14.
Metabolomics analysis of three Saccharopolyspora spinosa strains (wild type strain WT, ultraviolet mutant strain WH124, and metabolic engineering strain LU104) with different spinosad producing levels was performed by liquid chromatograph coupled to mass spectrometry (LC-MS). The metabolite profiles were subjected to hierarchal clustering analysis (HCA) and principal component analysis (PCA). The results of HCA on a heat map revealed that the large numbers of primary metabolism detected were more abundant in WH124 and less abundant in LU104 during the early fermentation stage as compared to the WT strain. PCA separated the three strains clearly and suggested nine metabolites that contributed predominantly to the separation. These biomarkers were associated with central carbon metabolism (succinic acid, α-ketoglutarate, acetyl-CoA, and ATP), amino acid metabolism (glutamate, glutamine, and valine), and secondary metabolism (pseudoaglycone), etc. These findings provide insight into the metabolomic characteristics of the two high-yield strains and for further regulation of spinosad production.  相似文献   

15.
16.
A strain of Streptomyces lividans, TK24, was found to produce a pigmented antibiotic, actinorhodin, although S. lividans normally does not produce this antibiotic. Genetic analyses revealed that a streptomycin-resistant mutation str-6 in strain TK24 is responsible for induction of antibiotic synthesis. DNA sequencing showed that str-6 is a point mutation in the rpsL gene encoding ribosomal protein S12, changing Lys-88 to Glu. Gene replacement experiments with the Lys88-->Glu str allele demonstrated unambiguously that the str mutation is alone responsible for the activation of actinorhodin production observed. In contrast, the strA1 mutation, a genetic marker frequently used for crosses, did not restore actinorhodin production and was found to result in an amino acid alteration of Lys-43 to Asn. Induction of actinorhodin production was also detected in strain TK21, which does not harbor the str-6 mutation, when cells were incubated with sufficient streptomycin or tetracycline to reduce the cell's growth rate, and 40 and 3% of streptomycin- or tetracycline-resistant mutants, respectively, derived from strain TK21 produced actinorhodin. Streptomycin-resistant mutations also blocked the inhibitory effects of relA and brgA mutations on antibiotic production, aerial mycelium formation or both. These str mutations changed Lys-88 to Glu or Arg and Arg-86 to His in ribosomal protein S12. The decrease in streptomycin production in relC mutants in Streptomyces griseus could also be abolished completely by introducing streptomycin-resistant mutations, although the impairment in antibiotic production due to bldA (in Streptomyces coelicolor) or afs mutations (in S. griseus) was not eliminated. These results indicate that the onset and extent of secondary metabolism in Streptomyces spp. is significantly controlled by the translational machinery.  相似文献   

17.
Mycelial levels of ATP and glucose-6-phosphate were investigated in mutants of streptothricin-producing S. noursei JA 3880b differing from the wild-type strain in antibiotic formation, in the control by inorganic phosphate of the secondary metabolism, and in the resistance to growth inhibition by toxic arsenate ions. As compared with the ancestral strain, mutants exhibited a lower content of ATP in the mycelium while addition of 0.1 M arsenate to growing cultures provoked only moderate changes in the level of this high-energy metabolite. The results suggest that there exists a correlation between growth resistance to arsenate and insensitivity to phosphate inhibition of the secondary metabolism, on the one hand, and the capacity to produce streptothricin-type antibiotics, on the other.  相似文献   

18.
Microbial superhost strains should provide an ideal platform for the efficient homologous or heterologous phenotypic expression of biosynthetic gene clusters (BGCs) of new and novel bioactive molecules. Our aim in the current study was to perform a comparative study at the bioprocess and metabolite levels of the previously designed superhost strain Streptomyces coelicolor M1152 and its derivative strain S. coelicolor M1581 heterologously expressing chloramphenicol BGC. Parent strain M1152 was characterized by a higher specific growth rate, specific CO2 evolution rate, and a higher specific l -glutamate consumption rate as compared with M1581. Intracellular primary central metabolites (nucleoside/sugar phosphates, amino acids, organic acids, and CoAs) were quantified using four targeted LC-MS/MS-based methods. The metabolite pathways in the nonantibiotic producing S. coelicolor host strain were flooded with carbon from both carbon sources, whereas in antibiotic-producing strain, the carbon of l -glutamate seems to be draining out through excreting synthesized antibiotic. The 13C-isotope-labeling experiments revealed the bidirectionality in the glycolytic pathway and reversibility in the non-oxidative part of PPP even with continuous uptake of d -glucose. The change in the primary metabolites due to the insertion of BGC disclosed a clear linkage between the primary and secondary metabolites.  相似文献   

19.
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.  相似文献   

20.
The synthesis of granaticin, a polyketide-derived antibiotic synthesized as a secondary metabolite by Streptomyces thermoviolaceus strain NCIB 10076, was studied at different growth temperatures. Quantitative measurements of the antibiotic made during batch fermentations showed that the yield was greatest at 45 degrees C, whereas the rate of synthesis was most rapid at 37 degrees C. The timing of the appearance of granaticin in culture could not be assigned to any particular phase of growth or to de-repression due to depletion of any particular nutrient. However, at all temperatures, appearance of the antibiotic coincided with a rise in ammoniacal nitrogen presumably due to deamination of glutamate, the carbon source for growth. We have previously shown that production of the antibiotic is pH sensitive and that some carbon sources result in higher titres than others. This paper examines the effect of temperature on the physiology of growth and on antibiotic production in more detail under conditions that also allow an exact measurement of granaticin yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号