首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polyphenols represent a large class of plant-derived molecules with a general chemical structure that act as potent free radical scavengers. They have long been recognized to possess several therapeutic activities ranging from anti-thrombotic to antioxidant. Moreover, the capability of polyphenols to act as reducing or oxidizing molecules depends on the presence of environmental metals and on the concentrations used. In this work we demonstrated that the stilbene trans-resveratrol was able to commit human breast cancer MCF-7 cells to apoptosis. Mainly, we evidenced a pivotal role of the mitochondria in this phenomenon as cytochrome c release into the cytosol was found after the treatment. We further showed that trans-resveratrol was able to affect cellular redox state. In particular, it induced an early production of ROS and lipid oxidation, and only later compromised the GSH/GSSG ratio. This mode of action was mirrored by a temporally different activation of JNK and p38(MAPK), with the former rapidly induced and the latter weakly activated at long intervals. The results obtained demonstrate a pro-apoptotic activity for trans-resveratrol, and suggest a preferential activation of different classes of MAP kinases in response to different oxidative stimuli (ROS versus GSH/GSSG alteration).  相似文献   

3.
为了解贵州金刺梨(Rosa sterilis D.Shi)果实和叶片中的活性成分及其抗氧化活性,以贵州普定县金刺梨种植基地的果实和叶片为试材,测定其活性成分含量及其抗氧化活性,并对各项指标进行相关性分析。结果显示:没食子酸、芦丁、槲皮素、儿茶素、鞣花酸、绿原酸、阿魏酸是供试金刺梨果实和叶片的主要酚类成分,金刺梨果实和叶片中活性组分差异显著(P<0.05),果实中p-香豆酸、总黄酮和抗坏血酸的含量相对较高,而叶片中没食子酸、儿茶素、绿原酸、表儿茶素、阿魏酸、鞣花酸、芦丁、槲皮素和总酚含量均高于果实;金刺梨果实抗氧化活性值均显著高于叶片(P<0.05);相关性分析发现:总黄酮对总还原力(TRPA)值的贡献极强,抗坏血酸对Fe3+还原抗氧化能力(FRAP)值贡献最强,槲皮素对ABTS值的贡献最强,说明金刺梨果实和叶片是一种具有较高开发价值的药食同源资源。  相似文献   

4.
The oxidative effect of tannic acid and its two derivatives (ellagic and gallic acid), naturally occurring plant polyphenols, has been studied on digestive gland cells of the fresh-water mussel Unio tumidus. A spectrophotometric method was used to determine the protein thiol groups after incubation of the cells with the polyphenols at concentrations of 1, 15 and 60 microM. The results showed that the oxidative modification of proteins increased in a concentration-dependent manner but no changes were observed at the concentration of 1 microM. The comet assay (single-cell gel electrophoresis assay) with the formamido-pyrimidine glycosylase (FPG) protein was used to assess oxidative DNA base damage. The cells were treated with polyphenols at the concentrations of 30 and 60 microM and post-incubated with FPG. FPG strongly enhanced DNA damage induced by the polyphenols, indicating that N-7 guanine oxidation is responsible for the observed effect. Using the comet assay in combination with proteinase K we were able to demonstrate the presence of DNA-protein cross-links as the probable cause of the decrease in DNA migration. After treatment of the cells with tannic acid and its metabolites at concentrations of 120, 180 and 240 microM, they were post-incubated with proteinase K. After this treatment an increased DNA migration was observed, indicating the presence of DNA-protein cross-links. We have also used a fluorescence method with Hoechst 33258/propidium iodide DNA-binding dyes to study the extent of DNA fragmentation after exposure of the cells to polyphenols at concentrations of 1, 5 and 60 microM. The results demonstrate that the polyphenols can induce apoptosis and necrosis at higher concentrations (5 and 60 microM). All experimental data suggest that tannic, ellagic and gallic acids at concentrations above 1 microM are able to interact with proteins and DNA, which leads to their degradation or changes in their function.  相似文献   

5.
Experimental autoimmune encephalomyelitis (EAE), the most common model for multiple sclerosis, is characterized by inflammatory cell infiltration into the central nervous system and demyelination. Previous studies have demonstrated that administration of some polyphenols may reduce the neurological alterations of EAE. In this work, we show that ellagic acid, a polyphenolic compound, is beneficial in EAE, most likely through stimulation of ceramide biosynthesis within the brain. EAE was induced in Lewis rats by injection of guinea-pig spinal cord tissue along with Freund's complete adjuvant containing Mycobacterium tuberculosis. Clinical signs first appeared at day 8 post-immunization and reached a peak within 3?days, coincident with reduction of myelin basic protein (MBP) in the cortex. Sphingolipids, the other major components of myelin, also decreased at the acute phase of EAE, both in the cerebral cortex and in the spinal cord. In rats receiving ellagic acid in the drinking water from 2?days before immunization, the onset of the disease was delayed and clinical signs were reduced. This amelioration of clinical signs was accompanied by sustained levels of both MBP and sphingolipid in the cortex, without apparent changes in infiltration of inflammatory CD3+ T-cells, microglial activation, or weight loss, which together suggest a neuroprotective effect of ellagic acid. Finally, in glioma and oligodendroglioma cells we demonstrate that urolithins, the ellagic acid metabolites that circulate in plasma, stimulate the synthesis of ceramide. Together these data suggest that ellagic acid consumption protects against demyelination in rats with induced EAE, likely by a mechanism involving sphingolipid synthesis.  相似文献   

6.
Whisky exerts an inhibitory effect on melanogenesis in B16 cells, the anti-melanogenic activity being positively correlated with the aging period and anti-oxidative activity of whisky. We examined the correlation between the inhibition of melanogenesis and the concentration of each compound in various whiskies to evaluate the importance of 11 different whisky polyphenols, including ellagic acid, gallic acid and lyoniresinol, in the anti-melanogenic activity of whisky. The concentration of all the compounds was positively correlated with the anti-melanogenic activity of whisky. Ellagic acid, gallic acid and lyoniresinol were the predominant polyphenols in the whiskies measured by HPLC. These three compounds also significantly inhibited the melanogenesis and tyrosinase activity in B16 cells. Ellagic acid, gallic acid and lyoniresinol were confirmed as the major participants in the anti-melanogenic activity of whisky.  相似文献   

7.
Whisky exerts an inhibitory effect on melanogenesis in B16 cells, the anti-melanogenic activity being positively correlated with the aging period and anti-oxidative activity of whisky. We examined the correlation between the inhibition of melanogenesis and the concentration of each compound in various whiskies to evaluate the importance of 11 different whisky polyphenols, including ellagic acid, gallic acid and lyoniresinol, in the anti-melanogenic activity of whisky. The concentration of all the compounds was positively correlated with the anti-melanogenic activity of whisky. Ellagic acid, gallic acid and lyoniresinol were the predominant polyphenols in the whiskies measured by HPLC. These three compounds also significantly inhibited the melanogenesis and tyrosinase activity in B16 cells. Ellagic acid, gallic acid and lyoniresinol were confirmed as the major participants in the anti-melanogenic activity of whisky.  相似文献   

8.
NEMEC  S. 《Annals of botany》1973,37(4):935-941
Roots of four strawberry cultivars contained phenolics previouslyisolated from the fruits and leaves; others were found whichapparently have not been reported. Catechin, gallic acid, andthree biflavans were the most prominent as spots on paper chromatograms.Kaempherol-7-glucoside, quercetin-7-glucoside, an unidentifiedflavanone glycoside, ellagic acid, an ellagic acid derivative,a galloyl ester, and two other hydrolysable tannins were detected.A leucoanthocyanin, cyanidin-3-monoglucoside, chlorogenie acid,a scopoletin glycoside, a derivative of arbutin, DOPA (3,4-dihydroxyphenylalanine),and three unidentified polyphenols comprised the other phenolicscommon to the four cultivars. A xanthone was found in only oneof four cultivars, Howard 17.  相似文献   

9.
The nuclear constitutive active/androstane receptor (CAR) is inactivated and sequestered in the cytoplasm when Thr-38 is phosphorylated. Here, we have demonstrated that activated ERK1/2 interacts with phosphorylated CAR to repress dephosphorylation of Thr-38. The phosphorylation-dependent interaction between CAR and ERK1/2 was examined by co-immunoprecipitation experiments of ectopically expressed FLAG-tagged CAR T38A and CAR T38D mutants with endogenous phospho-ERK1/2 in Huh-7 cells. Phospho-ERK1/2 coprecipitated only the phosphorylation-mimicking CAR T38D mutant; this coprecipitation was mediated by the interaction with the xenochemical response signal peptide near the C terminus of CAR. This interaction increased after EGF treatment and decreased after treatment with the MEK inhibitor U0126 as well as after knockdown of MEK1/2 by shRNA in Huh-7 cells. The phosphorylation levels of Thr-38 of CAR decreased in U0126-treated Huh-7 cells. Thus, activated ERK1/2 interacts with CAR and represses dephosphorylation of Thr-38, providing a cell signal-regulated mechanism for CAR activation.  相似文献   

10.
11.
Ellagic acid has been shown to improve cholesterol metabolism in animal studies, but the molecular mechanisms underlying this function have not been fully understood. We performed DNA microarray analysis to elucidate the effects of ellagic acid on cholesterol metabolism in HepG2 hepatocytes. This revealed that the expression levels of several genes related to cholesterol metabolism, including the low-density lipoprotein receptor (LDLR), were changed by ellagic acid treatment. Using a real-time PCR and immunoblot we confirmed that ellagic acid treatment up-regulated mRNA and protein expression level of the LDLR. Moreover, In the presence of 25 μM ellagic acid, extracellular apoB protein and MTP mRNA levels were significantly decreased. These findings indicate that ellagic acid improves cholesterol metabolism through the up-regulation of LDLR, down-regulation of MTP mRNA and reduces extracellular apoB levels. The ellagic acid-induced up-regulation of LDLR occurred via the extracellular signal-regulated kinase (ERK) signaling pathway in HepG2 hepatocytes.

Abbreviations: LDLR: low-density lipoprotein receptor; apoB: apolipoprotein B; PKC: diacylglycerol-protein kinase C; MAPK: mitogen-activated protein kinase; ERK: p42/44 extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; VLDLR: very low density lipoprotein receptor; PPARδ: peroxisome proliferator-activated receptor δ; SREBPs: sterol regulatory element-binding proteins; MTP: microsomal triacylglycerol transfer protein; LPDS: lipoprotein-deficient serum  相似文献   


12.
The endogenous CYP2B6 gene becomes phenobarbital (PB) inducible in androstenol-treated HepG2 cells either transiently or stably transfected with a nuclear receptor CAR expression vector. The PB induction mediated by CAR is regulated by a conserved 51-base pair element called PB-responsive enhancer module (PBREM) that has now been located between -1733 and -1683 bp in the gene's 5'-flanking region. An in vitro translated CAR acting as a retinoid X receptor alpha heterodimer binds directly to the two nuclear receptor sites NR1 and NR2 within PBREM. In a stably transfected HepG2 cell line, both PBREM and NR1 are activated by PB and PB-type compounds such as chlorinated pesticides, polychlorinated biphenyls and chlorpromazine. In addition to PBREM, CAR also transactivates the steroid/rifampicin-response element of the human CYP3A4 gene in HepG2 cells. Thus, activation of the repressed nuclear receptor CAR appears to be a versatile mediator that regulates PB induction of the CYP2B and other genes.  相似文献   

13.
The exposure of freshwater mussels Unio tumidus to phenolic compounds (tannic, ellagic and gallic acid) in vivo caused changes in proteins and DNA function of digestive gland cells. The mussels were exposed to various concentrations of tested polyphenols (60, 200 and 500 microM) for 24 and 48 h and their antioxidant and pro-oxidant effects were determined. The number of SH-groups was quantified spectrophotometrically using Ellman's reagent. Oxidative modification of proteins increased in the digestive gland cells in a dose- and time-dependent manner. The level of nuclear DNA damage was investigated using the comet assay. The results revealed that polyphenolic acids induce single and double-strand breaks in DNA. The highest changes were observed for tannic and gallic acids and the smallest ones for ellagic acid. 1h of DNA repair process was also studied using the same method. The data obtained in this experiment demonstrate that the most effective DNA repair occurs in the cells exposed to phenolic compounds for 24h. A longer incubation (up to 48 h) does not decrease the capacity of the repair mechanism. The antioxidant activity of the tested phenols was analyzed spectrofluorimetrically using a fluorescence probe DCFH-DA (dichlorofluorescein-diacetate). The experimental data showed that the tested acids can act as antioxidants when used at higher doses (200 and 500 microM) against the reactive oxygen species present in the digestive gland cells. The most effective was ellagic acid, also applied at the smallest dose of 60 microM, in comparison with tannic and gallic acids. In conclusion, our results demonstrate that chosen water-soluble polyphenols, which are located in various plant tissues and are also found in the aquatic environment, can influence organisms living in the water. They can be exposed to these chemicals that cause morphological alterations and changes in certain physiological processes in their organs (i.e. digestive gland cells of bivalve molluscs).  相似文献   

14.
Membrane-proximal cysteines 259 and 260 in the cytoplasmic tail of the coxsackievirus and adenovirus receptor (CAR) are known to be essential for the tumor suppression activity of CAR. We demonstrate that these residues provide an S-acylation motif for modification of CAR with the fatty acid palmitate. Substitution of alanine for cysteines 259 and 260 results in the additional localization of CAR in perinuclear compartments with no effect on the efficiency of adenovirus infection. The results indicate that palmitylation is important for stable plasma membrane expression and biological activity of CAR but is not critical for adenovirus receptor performance.  相似文献   

15.
Following exposure of differentiated neuronal PC12 cells to either t-BHP, hydrogen peroxide (H2O2) or FeSO4 various kinds of reactive oxygen species (ROS) are generated leading to oxidative injury. The protective effects of two plant polyphenols, ellagic (EC) and chlorogenic acid (CGA), as well as of two metabolites, caffeic acid (CA) and ferulic acid (FA), were investigated in preincubation and coincubation experiments with respect to the following parameters: prevention of cell death, GSH depletion, lipid peroxidation and ROS formation.

The polyphenols more efficiently suppressed cytotoxicity and loss of GSH caused by peroxides than by iron, particularly in preincubation. Lipid peroxidation which increased much stronger in response to FeSO4 was counteracted completely by the polyphenols. In case of iron, however, only coincubation was effective. EA and CGA and the metabolites CA and FA showed excellent elimination of ROS induced by all stressors. These findings suggest that two dietary antioxidants, EA and CGA, may have protective properties against oxidative stress induced in CNS.  相似文献   

16.
17.
Very homogeneous chemically, the genus Pittosporutn is characterized by the absence of leucoanthocyanidins, ellagic acid and phenyl-trihydroxylated compounds. This chemical definition seems to be applicable to the whole family.
Although a relationship between Pittosporum and the Saxifragaceae is not to be rejected categorically, it seems preferable, considering the polyphenols data and some anatomical features, to place Pittosporum near the Umbelliflorae rather than near the Saxifragaceae.  相似文献   

18.
PBREM, the phenobarbital-responsive enhancer module of the cytochrome P-450 Cyp2b10 gene, contains two potential nuclear receptor binding sites, NR1 and NR2. Consistent with the finding that anti-retinoid X receptor (RXR) could supershift the NR1-nuclear protein complex, DNA affinity chromatography with NR1 oligonucleotides enriched the nuclear orphan receptor RXR from the hepatic nuclear extracts of phenobarbital-treated mice. In addition to RXR, the nuclear orphan receptor CAR was present in the same enriched fraction. In the phenobarbital-treated mice, the binding of both CAR and RXR was rapidly increased before the induction of CYP2B10 mRNA. In vitro-translated CAR bound to NR1, but only in the presence of similarly prepared RXR. PBREM was synergistically activated by transfection of CAR and RXR in HepG2 and HEK293 cells when the NR1 site was functional. A CAR-RXR heterodimer has thus been characterized as a trans-acting factor for the phenobarbital-inducible Cyp2b10 gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号