首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This report describes the inhibitory effect of pomegranate rind extract (PGRE) on the motility of uropathogenic Escherichia coli (UPEC), a common agent of uncomplicated urinary tract infections (UTIs). To this end, a fliC-lux reporter, as well as Western blot analysis and scanning electron microscopy, was used to demonstrate that when UPEC strain CFT073 is exposed to PGRE, expression of the flagellin gene, fliC, and flagellin production decrease. In agreement with these results, the swimming and swarming motilities of UPEC were observed to be hindered in the presence of PGRE. To evaluate the effect of other pomegranate materials (PMs), the hydrolysable tannins in pomegranate (PG; punicalagin) and pomegranate fruit powder (PGP) were also investigated. Of the materials tested, PGRE had the strongest inhibitory effect on fliC expression and motility. Moreover, a fractionation of PGRE showed fractions with a molecular weight between 1000 and 3000?kDa to be the strongest inhibitors of fliC expression. Because flagellum-mediated motility has been suggested to enable UPEC to disseminate to the upper urinary tract; we propose that PGRE might be therapeutically beneficial in the treatment and prevention of UTIs.  相似文献   

2.
Community-acquired urinary tract infections (UTIs) are commonly caused by uropathogenic Escherichia coli (UPEC). We hypothesize that chemotaxis toward ligands present in urine could direct UPEC into and up the urinary tract. Wild-type E. coli CFT073 and chemoreceptor mutants with tsr, tar, or aer deletions were tested for chemotaxis toward human urine in the capillary tube assay. Wild-type CFT073 was attracted toward urine, and Tsr and Tar were the chemoreceptors mainly responsible for mediating this response. The individual components of urine including L-amino acids, D-amino acids and various organic compounds were also tested in the capillary assay with wild-type CFT073. Our results indicate that CFT073 is attracted toward some L- amino acids and possibly toward some D-amino acids but not other common compounds found in urine such as urea, creatinine and glucuronic acid. In the murine model of UTI, the loss of any two chemoreceptors did not affect the ability of the bacteria to compete with the wild-type strain. Our data suggest that the presence of any strong attractant and its associated chemoreceptor might be sufficient for colonization of the urinary tract and that amino acids are the main chemoattractants for E. coli strain CFT073 in this niche.  相似文献   

3.
尿道致病性大肠杆菌UPEC CFT073菌株(uropathogenic Escherichia coli CFT073)于2002年被完全测序并注释。但是,对其基因组的研究还很不完善,首先表现在基因组注释的系统性错误和滞后性。作者运用一系列生物信息学方法和工具,从编码蛋白质基因、编码RNA基因等角度对RefSeq数据库的基因组注释进行了系统的修正和增补,并在此基础上鉴别了一批新的候选致病因子基因。进一步的分析表明,得到的基因组注释对CFT073致病相关的一些重要调控关系和机制能够给出更准确、完整的描述。  相似文献   

4.
d-Serine is an amino acid present in mammalian urine that is inhibitory to Escherichia coli strains lacking a functional dsdA gene. Counterintuitively, a dsdA strain of E. coli clinical isolate CFT073 hypercolonizes the bladder and kidneys of mice relative to wild type during a coinfection in the murine model of urinary tract infection. We are interested in the mechanisms for uptake of d-serine in CFT073. d-Serine enters E. coli K-12 via CycA, the d-alanine transporter and d-cycloserine sensitivity locus. CFT073 cycA can grow on minimal medium with d-serine as a sole carbon source. The dsdX gene of the dsdCXA locus is a likely candidate for an additional d-serine transporter based on its predicted amino acid sequence similarity to gluconate transporters. In minimal medium, CFT073 dsdX can grow on d-serine as a sole carbon source; however, CFT073 dsdX cycA cannot. Additionally, CFT073 dsdXA cycA is not sensitive to inhibitory concentrations of d-serine during growth on glycerol and d-serine minimal medium. d-[(14)C]serine uptake experiments with CFT073 dsdX cycA harboring dsdX or cycA recombinant plasmids confirm that d-serine is able to enter E. coli cells via CycA or DsdX. In whole-cell d-[(14)C]serine uptake experiments, DsdX has an apparent K(m) of 58.75 microM and a V(max) of 75.96 nmol/min/mg, and CycA has an apparent K(m) of 82.40 microM and a V(max) of 58.90 nmol/min/mg. Only d-threonine marginally inhibits DsdX-mediated d-serine transport, whereas d-alanine, glycine, and d-cycloserine inhibit CycA-mediated d-serine transport. DsdX or CycA is sufficient to transport physiological quantities of d-serine, but DsdX is a d-serine-specific permease.  相似文献   

5.
The urinary tract environment provides many conditions that deter colonization by microorganisms. D-serine is thought to be one of these stressors and is present at high concentrations in urine. D-serine interferes with L-serine and pantothenate metabolism and is bacteriostatic to many species. Uropathogenic Escherichia coli commonly possess the dsdCXA genetic locus, which allows them to use D-serine as a sole carbon, nitrogen, and energy source. It was previously reported that in the model UPEC strain CFT073, a dsdA mutant outcompetes wild type in the murine model of urinary tract infection. This “hypercolonization” was used to propose a model whereby UPEC strains sense D-serine in the urinary tract and subsequently up-regulate genes necessary for pathogenesis. Here, we show that inactivation of dsdA does not lead to hypercolonization. We suggest that this previously observed effect is due to an unrecognized secondary mutation in rpoS and that some D-serine specific effects described in other studies may be affected by the rpoS status of the strains used. Inactivation of dsdA in the original clinical isolate of CFT073 gives CFT073 ΔdsdA a growth defect in human urine and renders it unable to grow on minimal medium containing D-serine as the sole carbon source. However, CFT073 ΔdsdA is able to colonize the urinary tracts of CBA/J mice indistinguishably from wild type. These findings indicate that D-serine catabolism, though it may play role(s) during urinary tract infection, does not affect the ability of uropathogenic E. coli to colonize the murine urinary tract.  相似文献   

6.
【目的】对大肠杆菌CFT073中Culri系统的重要蛋白CsgF进行高效表达,探索其纯化条件和三维结构,为研究Curli生物合成机制提供理论基础。【方法】以大肠杆菌CFT073基因组为模板扩增csgF基因,构建pET28a-csg F(nsp)-N-6His、pET28a-csg F(20-129)-N-6His、pET28a-csg F-C-6His和p ET28a-csg F(nsp)-C-6His等重组质粒,转化到大肠杆菌DH5α并在BL21(DE3)中诱导表达;通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳鉴定CsgF蛋白在大肠杆菌中的表达情况,用Ni-NTA His Bind Resin和凝胶排阻层析色谱纯化重组蛋白CsgF,SDS-PAGE和Western blotting方法鉴定分析;用Pull down实验研究CsgF与CsgG蛋白的相互作用,同源模建方法分析重组蛋白CsgF的三级结构。【结果】克隆了目的基因csg F,并筛选出稳定CsgF蛋白的条件:50 mmol/L Sodium acetate(pH 5.0)、150 mmol/L NaCl、5%Glyercol;CsgF与CsgG存在相互作用,CsgF三维结构模型显示为(β/α)。【结论】获得了高纯度稳定的CsgF重组蛋白及其三维结构,为进一步研究CsgF结构与功能奠定了基础。  相似文献   

7.
8.
9.
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.Disulfide bonds bridging cysteine pairs impart structural stability and protease resistance to secreted and membrane-associated proteins. Most organisms contain specific mechanisms for the formation of disulfide bonds in proteins, a process called oxidative protein folding. In bacteria, this folding process is catalyzed by the disulfide bond family of proteins (18, 22). The best-characterized bacterial disulfide bond machinery is the Escherichia coli K-12 oxidative system, which consists of two enzymes, the periplasmic DsbA and the inner-membrane DsbB (25, 35). DsbA is a monomeric protein comprising a thioredoxin (TRX) domain with an embedded helical insertion and a redox-active CPHC motif (34). This highly oxidizing protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide (2, 4, 5), and as a result, the two cysteines contained in the CPHC catalytic motif become reduced. DsbB reoxidizes this cysteine pair and restores the oxidizing activity of DsbA, enabling it to assist the folding of a new substrate protein (21).The DsbAB oxidative protein folding system plays a well-documented part in bacterial virulence. Several studies have demonstrated a direct role for both enzymes, particularly DsbA, in the biogenesis of virulence factors utilized by bacterial pathogens in various stages of the infection process (19). The protein forming the P-ring of E. coli flagella, FlgI, was one of the first DsbA substrates identified (10) and flagellum-mediated motility was subsequently demonstrated to require the presence of functional DsbA in several gram-negative pathogens, including Salmonella enterica (1), Proteus mirabilis (8), Erwinia carotovora subsp. atroseptica (9), Burkholderia cepacia (17), and Campylobacter jejuni (42). In Yersinia pestis, S. enterica, Shigella flexneri, and enteropathogenic E. coli, deletion of dsbA results in defective type III secretion, a major virulence mechanism employed by these enteric pathogens to manipulate the host during infection. The defect was shown in each case to involve the outer membrane secretin (YscC, SpiA, Spa32, and EscC, respectively), which requires a single intramolecular disulfide bond to adopt a functional conformation (23, 36, 37, 49). Fimbria-mediated adhesion is a crucial first step of the infection process as it allows host colonization by mucosal pathogens. DsbA is required for functional assembly of several types of fimbriae, including P fimbriae of uropathogenic E. coli (UPEC) (24), bundle-forming pili (Bfp) of enteropathogenic E. coli (55), mannose-resistant Proteus-like (MR/P) fimbriae of Proteus mirabilis (8), plasmid-encoded fimbriae (Pef) of Salmonella enterica (6), type IV pili of Neisseria meningitidis (47), and toxin-coregulated pili (Tcp) of Vibrio cholerae (41). A number of studies have reported that dsbA and/or dsbB mutants are attenuated in infection models (9, 16, 41, 48, 52).The recent exponential increase in sequenced genomes has offered a first glimpse at the diversity of disulfide bond systems present in bacteria (13). In addition, it is now evident that several bacterial species encode multiple DsbA paralogues, often with demonstrated differences in substrate specificity. Neisseria meningitidis, for example, encodes three DsbA oxidoreductases: two inner membrane-associated lipoproteins (DsbA1 and DsbA2) and one periplasmic enzyme (DsbA3). While redundancy was observed in the oxidative folding of virulence-associated proteins by DsbA1 and DsbA2, DsbA3 alone was unable to restore important meningococcal virulence traits, such as type IV pilus-mediated adhesion to human endothelial cells (47). Recently, a second E. coli disulfide bond system (DsbLI) was identified in the genome-sequenced UPEC strain CFT073 and was demonstrated to be a functional paralogue of the prototypic DsbAB system (14). The oxidoreductase DsbL has the strongest oxidizing potential of all DsbA homologues characterized to date. Although the crystal structure of DsbL revealed a similar overall fold and domain architecture to DsbA, DsbL contains a longer helical insertion and deletions in the TRX domain that result in a truncated peptide binding groove. Moreover, DsbL shows different surface properties, including a distinct basic patch around the active site, which was suggested to allow stricter substrate specificity than the highly hydrophobic surface surrounding the active site of DsbA. Grimshaw and colleagues (14) demonstrated the specificity of the DsbLI system for the periplasmic enzyme arylsulfate sulfotransferase (ASST) encoded by assT, a gene found immediately upstream of dsbL and dsbI on the CFT073 chromosome. ASST belongs to a group of poorly characterized large bacterial ASSTs that are proposed to mediate detoxification of phenolic substances by catalyzing the transfer of sulfuryl groups from phenolic sulfates to phenol (26-28, 30). A reason for the specificity of DsbLI for ASST folding could be the presence of an allosteric disulfide bond, recently revealed by the enzyme''s crystal structure (33). This class of disulfide bond forms between Cα atoms of cysteines in unusually close proximity (3.8 Å in the case of ASST) and has higher steric strain energy than catalytic or structural disulfide bonds, thus explaining the requirement for the stronger DsbL oxidase for its formation (33). The activity of DsbL and DsbI was studied using plasmids introduced into E. coli K-12 strains with the native DsbAB system deleted. As yet, the role of the DsbLI system in UPEC virulence has not been investigated.E. coli CFT073 is a prototypic UPEC strain isolated from a female patient with acute pyelonephritis (38). UPEC strains are the causative agent of >80% of community-acquired urinary tract infections (UTIs) and >30% of nosocomial infections (7). The uropathogenic lifestyle of UPEC CFT073 is reflected in its genome, which contains several factors with an established role in urovirulence, including the well-studied type 1 and P fimbriae (50). Genomic comparison of CFT073—and other recently sequenced UPEC strains—with E. coli strains with distinct lifestyles (gut commensals, enteric pathogens, and avian pathogens) allows the discovery of genes unique to genomes of uropathogenic bacteria that are potentially novel urovirulence factors. One such UPEC-specific gene is assT, the gene located upstream of dsbL and dsbI in the chromosome of CFT073 (32).Here we characterize the DsbLI system in its native genetic background of UPEC CFT073 and compare and contrast the contribution of each of the two paralogous disulfide bond systems of CFT073 in the production of UPEC-associated virulence factors and in vivo uropathogenesis. Using isogenic dsbAB and dsbLI deletion mutants of CFT073, we demonstrate that the recently identified DsbLI oxidative protein folding machinery of UPEC CFT073 plays a secondary role in the production of urovirulence factors and does not appear to contribute to virulence in the mouse infection model used in this study. We also show that in the same infection model, an isogenic assT deletion mutant of CFT073 is not attenuated.  相似文献   

10.
Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ~80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.  相似文献   

11.
Escherichia coli is a highly versatile species encompassing a diverse spectrum of strains, i.e. from highly virulent isolates causing serious infectious diseases to commensals and probiotic strains. Although much is known about bacterial pathogenicity in E. coli, the understanding of which genetic determinants differentiates a virulent from an avirulent strain still remains limited. In this study we designed a new comparative genomic hybridization microarray based on 31 sequenced E. coli strains and used it to compare two E. coli strains used as prophylactic agents (i.e. Nissle 1917 and 83972) with the highly virulent uropathogen CFT073. Only relatively minor genetic variations were found between the isolates, suggesting that the three strains may have originated from the same virulent ancestral parent. Interestingly, Nissle 1917 (a gut commensal strain) was more similar to CFT073 with respect to genotype and phenotype than 83972 (an asymptomatic bacteriuria strain). The study indicates that genetic variations (e.g. mutations) and expression differences, rather than genomic content per se, contribute to the divergence in disease-causing ability between these strains. This has implications for the use of virulence factors in epidemiological research, and emphasizes the need for more comparative genomic studies of closely related strains to compare their virulence potential.  相似文献   

12.
Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype.  相似文献   

13.
International Microbiology - Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing...  相似文献   

14.
15.
16.
Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.  相似文献   

17.
The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.  相似文献   

18.
19.
During routine quality control testing of diagnostic methods for Shiga toxin-producing Escherichia coli (STEC) using stool samples spiked with STEC, it was observed that the Shiga toxin could not be detected in 32 out of 82 samples tested. Strains of E. coli isolated from such stool samples were shown to be responsible for this inhibition. One particular isolate, named E. coli 1307, was intensively studied because of its highly effective inhibitory effect; this strain significantly reduced growth and Shiga toxin levels in coculture of several STEC strains regardless of serovar or Shiga toxin type. The probiotic E. coli Nissle 1917 inhibited growth and reduced Shiga toxin levels in STEC cultures to an extent similar to E. coli 1307, but commensal E. coli strains and several other known probiotic bacteria (enterococci, Bacillus sp., Lactobacillus acidophilus ) showed no, or only small, inhibitory effects. Escherichia coli 1307 lacks obvious fitness factors, such as aerobactin, yersiniabactin, microcins and a polysaccharide capsule, that are considered to promote the growth of pathogenic bacteria. We therefore propose strain E. coli 1307 as a candidate probiotic for use in the prevention and treatment of infections caused by STEC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号