首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The retinoid-related orphan receptor alpha (RORalpha), a member of the ROR subfamily of nuclear receptors, has been implicated in the control of a number of physiological processes, including the regulation of several immune functions. To study the potential role of RORalpha in the regulation of innate immune responses in vivo, we analyzed the induction of airway inflammation in response to lipopolysaccharide (LPS) challenge in wild-type and staggerer (RORalpha(sg/sg)) mice, a natural mutant strain lacking RORalpha expression. Examination of hematoxylin and eosin-stained lung sections showed that RORalpha(sg/sg) mice displayed a higher degree of LPS-induced inflammation than wild-type mice. Bronchoalveolar lavage (BAL) was performed at 3, 16, and 24 h after LPS exposure to monitor the increase in inflammatory cells and the level of several cytokines/chemokines. The increased susceptibility of RORalpha(sg/sg) mice to LPS-induced airway inflammation correlated with a higher number of total cells and neutrophils in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. In addition, IL-1beta, IL-6, and macrophage inflammatory protein-2 were appreciably more elevated in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. The enhanced susceptibility of RORalpha(sg/sg) mice appeared not to be due to a repression of IkappaBalpha expression. Our observations indicate that RORalpha(sg/sg) mice are more susceptible to LPS-induced airway inflammation and are in agreement with the hypothesis that RORalpha functions as a negative regulator of LPS-induced inflammatory responses.  相似文献   

2.
3.

Background

Lysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA1-3). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.

Methods

Wild type, LPA1 heterozygous knockout mice (LPA1+/-), and LPA2 heterozygous knockout mice (LPA2+/-) were sensitized with inactivated Schistosoma mansoni eggs and local antigenic challenge with Schistosoma mansoni soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.

Results

BAL fluids from Schistosoma mansoni egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA2+/- mice, but not LPA1+/- mice, exposed to Schistosoma mansoni egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA2+/- and LPA1+/- mice showed decreases in bronchial goblet cells. LPA2+/- mice, but not LPA1+/- mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA2+/- mice. These results suggest that LPA and LPA receptors are involved in Schistosoma mansoni egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.  相似文献   

4.
5.
Phosphatidic acid (PA) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in C6 rat glioma and L2071 mouse fibroblast cells. Dioleoyl PA (PA, 18:1) was the most efficacious, followed by dipalmitoyl PA (16:0 PA) and dimyristoyl PA (14:0 PA). Lysophosphatidic acid (LPA) also increased the [Ca(2+)](i) in the both cells. PA desensitized LPA-induced Ca(2+) response completely in C6 cells, but partly in L2071 cells. Treatment of pertussis toxin (PTX), a specific inhibitor of G(i/o)-type G proteins, completely ameliorated LPA- and PA-induced Ca(2+) response in C6 cells. However, in L2071 cells, PTX inhibited PA-induced Ca(2+) increase by 80% and LPA-induced one by 20%. Ki16425, a specific inhibitor of LPA(1)/LPA(3) receptors, completely inhibited both LPA- and PA-induced Ca(2+) responses in C6 cells. On the other hand, in L2071 cells, Ki16425 completely inhibited PA-induced Ca(2+) response, but partly LPA-induced one. VPC32183, another specific inhibitor of LPA(1)/LPA(3) receptors, completely inhibited LPA- and PA-induced Ca(2+) responses in both C6 and L2071 cells. Therefore, PA and LPA appear to increase [Ca(2+)](i) through Ki16425/VPC32183-sensitive LPA receptor coupled to PTX-sensitive G proteins in C6 cells. In L2071 cells, however, LPA increases [Ca(2+)](i) through Ki16425-insensitive LPA receptor coupled to PTX-insensitive G proteins and Ki16425-sensitive LPA receptor coupled to PTX-sensitive G protein, whereas PA utilized only the latter pathway. Our results suggest that PA acts as a partial agonist on endogenous LPA receptors, which are sensitive to Ki16425 and coupled to PTX-sensitive G protein, but not on LPA receptors, which are not sensitive to Ki16425 and coupled to PTX-insensitive G protein.  相似文献   

6.
The bioactive phospholipid, lysophosphatidic acid (LPA), acting through at least five distinct receptors LPA1–LPA5, plays important roles in numerous biological processes. Here we report that LPA induces osteoblastic differentiation of human mesenchymal stem cells hMSC‐TERT. We find that hMSC‐TERT mostly express two LPA receptors, LPA1 and LPA4, and undergo osteoblastic differentiation in serum‐containing medium. Inhibition of LPA1 with Ki16425 completely abrogates osteogenesis, indicating that this process is mediated by LPA in the serum through activation of LPA1. In contrast to LPA1, down‐regulation of LPA4 expression with shRNA significantly increases osteogenesis, suggesting that this receptor normally exerts negative effects on differentiation. Mechanistically, we find that in hMSC‐TERT, LPA induces a rise in both cAMP and Ca2+. The rise in Ca2+ is completely abolished by Ki16425, whereas LPA‐mediated cAMP increase is not sensitive to Ki16425. To test if LPA signaling pathways controlling osteogenesis in vitro translate into animal physiology, we evaluated the bones of LPA4‐deficient mice. Consistent with the ability of LPA4 to inhibit osteoblastic differentiation of stem cells, LPA4‐deficient mice have increased trabecular bone volume, number, and thickness. J. Cell. Biochem. 109: 794–800, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

8.
Lysophosphatidic acid (LPA) is a pro-fibrotic mediator acting via specific receptors (LPARs) and is synthesized by autotaxin, that increases with obesity. We tested whether LPA could play a role in adipose tissue (AT)-fibrosis associated with obesity. Fibrosis [type I, III, and IV collagens (COL), fibronectin (FN), TGFβ, CTGF and αSMA] and inflammation (MCP1 and F4/80) markers were quantified: (i) in vivo in inguinal (IAT) and perigonadic (PGAT) AT from obese-diabetic db/db mice treated with the LPAR antagonist Ki16425 (5 mg/kg/day ip for 7 weeks); and (ii) in vitro in human AT explants in primary culture for 72 h in the presence of oleoyl-LPA (10 μM) and/or Ki16425 (10 μM) and/or the HIF-1α inhibitor YC-1 (100 μM). Treatment of db/db mice with Ki16425 reduced Col I and IV mRNAs in IAT and PGAT while Col III mRNAs were only reduced in IAT. This was associated with reduction of COL protein staining in both IAT and PGAT. AT explants showed a spontaneous and time-dependent increase in ATX expression and production of LPA in the culture medium, along with increased levels of Col I and III, TGFβ and αSMA mRNAs and of COL protein staining. In vitro fibrosis was blocked by Ki16425 and was further amplified by oleoyl-LPA. LPA-dependent in vitro fibrosis was blocked by co-treatment with YC1. Our results show that endogenous and exogenous LPA exert a pro-fibrotic activity in AT in vivo and in vitro. This activity could be mediated by an LPA1R-dependent pathway and could involve HIF-1α.  相似文献   

9.
Autotaxin (ATX) is a tumor cell motility-stimulating factor originally isolated from melanoma cell supernatant that has been implicated in regulation of invasive and metastatic properties of cancer cells. Recently, we showed that ATX is identical to lysophospholipase D, which converts lysophosphatidylcholine to a potent bioactive phospholipid mediator, lysophosphatidic acid (LPA), raising the possibility that autocrine or paracrine production of LPA by ATX contributes to tumor cell motility. Here we demonstrate that LPA and ATX mediate cell motility-stimulating activity through the LPA receptor, LPA(1). In fibroblasts isolated from lpa(1)(-/-) mice, but not from wild-type or lpa(2)(-/-), cell motility stimulated with LPA and ATX was completely absent. In the lpa(1)(-/-) cells, LPA-stimulated lamellipodia formation was markedly diminished with a concomitant decrease in Rac1 activation. LPA stimulated the motility of multiple human cancer cell lines expressing LPA(1), and the motility was attenuated by an LPA(1)-selective antagonist, Ki16425. The present study suggests that ATX and LPA(1) represent potential targets for cancer therapy.  相似文献   

10.
11.

Lysophosphatidic acid (LPA) is a small phospholipid that acts as an extracellular lipid mediator. It promotes cancer progression by altering a wide array of cellular processes, including apoptosis, survival, angiogenesis, invasion, and migration through binding with its cognate receptors. Intriguingly, our previous study showed that in vitro treatment of LPA induced survival of T lymphoma cells. Hence, the present investigation was designed to investigate the antitumor potential of Ki16425, an antagonist of LPA receptors, against T cell lymphoma. Our in vitro results showed inhibition of LPA-mediated survival and metabolic activity of T lymphoma cells by Ki16425. Further, in vivo experimental findings indicated the tumor retarding potential of Ki16425 against T cell lymphoma through apoptosis induction, glycolysis inhibition, and immunoactivation. The administration of Ki16425 triggered apoptosis by down-regulating the expression of Bcl2 and up-regulating p53, Bax, cleaved caspase-3, and Cyt c expression. Further, Ki16425 suppressed glycolytic activity with concomitantly decreased expression of GLUT3 and MCT1. Moreover, we also noticed an elevated level of NO and iNOS in tumor cells after Ki16425 administration which might also be responsible for apoptosis induction and suppressed glycolysis. Additionally, we observed an increased population of total leukocytes, lymphocytes, and monocytes along with increased thymocytes count and IL-2 and IFN-γ levels. Besides, we observed amelioration of tumor-induced kidney and liver damages by Ki16425. Taken together, this is the first study that demonstrates that LPA receptors could be potential future therapeutic targets for designing promising therapeutic strategies against T cell lymphoma.

  相似文献   

12.
An enantionselective synthesis of both enantiomers of Ki16425, which possesses selective LPA antagonistic activity, was achieved. The isoxazole core was constructed by a 1,3-dipolar cycloaddition of nitrile oxide with alkyne and condensation with the optically active α-phenethyl alcohol segment, which was prepared by an enantioselective reduction of arylmethylketone. Biological evaluation of both enantiomers of Ki16425 revealed that the (R)-isomer showed much higher antagonistic activity for LPA(1) and LPA(3) receptors.  相似文献   

13.
Autotaxin (ATX) is a multifunctional ecto-type phosphodiesterase that converts lysophospholipids, such as lysophosphatidylcholine, to lysophosphatidic acid (LPA) by its lysophospholipase D activity. LPA is a lipid mediator with diverse biological functions, most of which are mediated by G protein-coupled receptors specific to LPA (LPA1-6). Recent studies on ATX knock-out mice revealed that ATX has an essential role in embryonic blood vessel formation. However, the underlying molecular mechanisms remain to be solved. A data base search revealed that ATX and LPA receptors are conserved in wide range of vertebrates from fishes to mammals. Here we analyzed zebrafish ATX (zATX) and LPA receptors both biochemically and functionally. zATX, like mammalian ATX, showed lysophospholipase D activity to produce LPA. In addition, all zebrafish LPA receptors except for LPA5a and LPA5b were found to respond to LPA. Knockdown of zATX in zebrafish embryos by injecting morpholino antisense oligonucleotides (MOs) specific to zATX caused abnormal blood vessel formation, which has not been observed in other morphant embryos or mutants with vascular defects reported previously. In ATX morphant embryos, the segmental arteries sprouted normally from the dorsal aorta but stalled in midcourse, resulting in aberrant vascular connection around the horizontal myoseptum. Similar vascular defects were not observed in embryos in which each single LPA receptor was attenuated by using MOs. Interestingly, similar vascular defects were observed when both LPA1 and LPA4 functions were attenuated by using MOs and/or a selective LPA receptor antagonist, Ki16425. These results demonstrate that the ATX-LPA-LPAR axis is a critical regulator of embryonic vascular development that is conserved in vertebrates.  相似文献   

14.
15.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

16.
The aim of the present study was to evaluate the anti-inflammatory activity of pre-elafin, an elastase-specific inhibitor, in lipopolysaccharide (LPS)-induced acute lung inflammation. C57BL/6 mice were pre-treated intranasally with recombinant human pre-elafin or vehicle only. One hour later, they were instilled intranasally with LPS (2 microg/mouse). Animals were sacrificed 6 hours after LPS instillation and bronchoalveolar lavage (BAL) was performed with three 1-ml aliquots of saline. LPS induced a lung inflammation characterised by a 100-fold increase in BAL neutrophils compared to control animals (265.8 +/- 54.5 x 10(3) and 2.4 +/- 1.3 x 10(3) neutrophils/ml, respectively). Pre-elafin dose-dependently reduced the neutrophil influx in the lung alveolar spaces by up to 84%. No elastase activity was detectable in all BAL fluids tested. Pre-elafin also reduced significantly LPS-induced gelatinase activity, as shown by zymography, and BAL macrophage inflammatory protein-2 (MIP-2) and KC levels, two potent neutrophil attractants and activators. Moreover, pre-elafin also significantly reduced mRNA levels of the three members of the IL-1 ligand family, namely IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1Ra), type II IL-1 receptor, and TNFalpha as assessed in whole lung tissue by RNase protection assay. Thus, pre-elafin may be considered as a potent anti-inflammatory mediator.  相似文献   

17.
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-alpha, MIP1alpha, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-alpha responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-gamma/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-alpha at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.  相似文献   

18.
Previous studies have demonstrated that heterotrimeric guanine nucleotide-binding regulatory (Gi) protein-deficient mice exhibit augmented inflammatory responses to lipopolysaccharide (LPS). These findings suggest that Gi protein agonists will suppress LPS-induced inflammatory gene expression. Lysophosphatidic acid (LPA) activates G protein-coupled receptors leading to Gi protein activation. We hypothesized that LPA will inhibit LPS-induced inflammatory responses through activation of Gi-coupled anti-inflammatory signaling pathways. We examined the anti-inflammatory effect of LPA on LPS responses both in vivo and in vitro in CD-1 mice. The mice were injected intravenously with LPA (10 mg/kg) followed by intraperitoneal injection of LPS (75 mg/kg for survival and 25 mg/kg for other studies). LPA significantly increased the mice survival to endotoxemia (P < 0.05). LPA injection reduced LPS-induced plasma TNF-alpha production (69 +/- 6%, P < 0.05) and myeloperoxidase (MPO) activity in lung (33 +/- 9%, P < 0.05) as compared to vehicle injection. LPS-induced plasma IL-6 was unchanged by LPA. In vitro studies with peritoneal macrophages paralleled results from in vivo studies. LPA (1 and 10 microM) significantly inhibited LPS-induced TNFalpha production (61 +/- 9% and 72 +/- 9%, respectively, P < 0.05) but not IL-6. We further demonstrated that the anti-inflammatory effect of LPA was reversed by ERK 1/2 and phosphatase inhibitors, suggesting that ERK 1/2 pathway and serine/threonine phosphatases are involved. Inhibition of phosphatidylinositol 3 (PI3) kinase signaling pathways also partially reversed the LPA anti-inflammatory response. However, LPA did not alter NFkappaB and peroxisome proliferator-activated receptor gamma (PPARgamma) activation. Inhibitors of PPARgamma did not alter LPA-induced inhibition of LPS signaling. These studies demonstrate that LPA has significant anti-inflammatory activities involving activation of ERK 1/2, serine/threonine phosphatases, and PI3 kinase signaling pathways.  相似文献   

19.
Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells.  相似文献   

20.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号