首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The loading module for the nystatin polyketide synthase (PKS) in Streptomyces noursei is represented by the NysA protein composed of a ketosynthase (KS(S)), acyltransferase, dehydratase, and an acyl carrier protein. The absolute requirement of this protein for initiation of nystatin biosynthesis was demonstrated by the in-frame deletion of the nysA gene in S. noursei. The role of the NysA KS(S) domain, however, remained unclear, since no data on the significance of the "active site" serine (Ser-170) residue in the loading modules of type I PKSs were available. Site-specific mutagenesis of Ser-170 both in the wild-type NysA and in the hybrid loading module containing malonyl-specific acyltransferase domain from the extender module had no effect on nystatin biosynthesis. A second mutation (S413N) of the NysA KS(S) domain was discovered that completely abolished the ability of the hybrids to restore nystatin biosynthesis, presumably by affecting the ability of the resulting proteins to catalyze the required substrate decarboxylation. In contrast, NysA and its Ser-170 mutants bearing the same S413N mutation were able to restore nystatin production to significant levels, probably by using acetyl-CoA as a starter unit. Together, these data suggest that the KS(S) domain of NysA differs from the KS(Q) domains found in the loading modules of several PKS type I systems in that the active site residue is not significant for its activity.  相似文献   

2.
The methylmalonyl coenzyme A (methylmalonyl-CoA)-specific acyltransferase (AT) domains of modules 1 and 2 of the 6-deoxyerythronolide B synthase (DEBS1) of Saccharopolyspora erythraea ER720 were replaced with three heterologous AT domains that are believed, based on sequence comparisons, to be specific for malonyl-CoA. The three substituted AT domains were "Hyg" AT2 from module 2 of a type I polyketide synthase (PKS)-like gene cluster isolated from the rapamycin producer Streptomyces hygroscopicus ATCC 29253, "Ven" AT isolated from a PKS-like gene cluster of the pikromycin producer Streptomyces venezuelae ATCC 15439, and RAPS AT14 from module 14 of the rapamycin PKS gene cluster of S. hygroscopicus ATCC 29253. These changes led to the production of novel erythromycin derivatives by the engineered strains of S. erythraea ER720. Specifically, 12-desmethyl-12-deoxyerythromycin A, which lacks the methyl group at C-12 of the macrolactone ring, was produced by the strains in which the resident AT1 domain was replaced, and 10-desmethylerythromycin A and 10-desmethyl-12-deoxyerythromycin A, both of which lack the methyl group at C-10 of the macrolactone ring, were produced by the recombinant strains in which the resident AT2 domain was replaced. All of the novel erythromycin derivatives exhibited antibiotic activity against Staphylococcus aureus. The production of the erythromycin derivatives through AT replacements confirms the computer predicted substrate specificities of "Hyg" AT2 and "Ven" AT and the substrate specificity of RAPS AT14 deduced from the structure of rapamycin. Moreover, these experiments demonstrate that at least some AT domains of the complete 6-deoxyerythronolide B synthase of S. erythraea can be replaced by functionally related domains from different organisms to make novel, bioactive compounds.  相似文献   

3.
Enoyl reductase (ER) domains in module 5 of nystatin and amphotericin polyketide synthase (PKS) are responsible for reduction of the C28–C29 unsaturated bond on the nascent polyketide chain during biosynthesis of both macrolides, resulting in production of tetraenes nystatin A1 and amphotericin A, respectively. Data obtained in fermentations under glucose limitation conditions demonstrated that the efficiency of the ER5 domain can be influenced by carbon source availability in the amphotericin producer Streptomyces nodosus, but not in the nystatin producer Streptomyces noursei. Two S. noursei ER5 domain mutants were constructed, GG5073SP and S5016N, both producing the heptaene nystatin analogue S44HP with unsaturated C28–C29 bond. While the GG5073SP mutant, with altered ER5 NADPH binding site, produced S44HP exclusively, the S5016N mutant synthesized a mixture of nystatin and S44HP. Comparative studies on the S5016N S. noursei mutant and S. nodosus, both producing mixtures of tetraenes and heptaenes, revealed that the ratio between these two types of metabolites was significantly more affected by glucose limitation in S. nodosus. These data suggest that mutation S5016N in NysC “locks” the ER5 domain in a state of intermediate activity which, in contrast to the ER5 domain in the amphotericin PKS, is not significantly influenced by physiological conditions.  相似文献   

4.
The rimJ gene, which codes for a crotonyl-CoA carboxylase/reductase, lies within the biosynthetic gene cluster for two polyketides belonging to the polyene macrolide group (CE-108 and rimocidin) produced by Streptomyces diastaticus var. 108. Disruption of rimJ by insertional inactivation gave rise to a recombinant strain overproducing new polyene derivatives besides the parental CE-108 (2a) and rimocidin (4a). The structure elucidation of one of them, CE-108D (3a), confirmed the incorporation of an alternative extender unit for elongation step 13. Other compounds were also overproduced in the fermentation broth of rimJ disruptant. The new compounds are in vivo substrates for the previously described polyene carboxamide synthase PcsA. The rimJ disruptant strain, constitutively expressing the pcsA gene, allowed the overproduction of CE-108E (3b), the corresponding carboxamide derivative of CE-108D (3a), with improved pharmacological properties.  相似文献   

5.
Kim CY  Alekseyev VY  Chen AY  Tang Y  Cane DE  Khosla C 《Biochemistry》2004,43(44):13892-13898
The hallmark of a type I polyketide synthase (PKS), such as the 6-deoxyerythronolide B synthase (DEBS), is the presence of catalytic modules comprised of covalently fused domains acting together to catalyze one round of chain elongation. In addition to an obligate ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP), a module may also include a ketoreductase (KR), dehydratase (DH), and/or enoyl reductase (ER) domain. The size, flexibility, and fixed domain-domain stoichiometry of these PKS modules present challenges for structural, mechanistic, and protein-engineering studies. Here, we have harnessed the power of limited proteolysis and heterologous protein expression to isolate and characterize individual domains of module 3 of DEBS, a 150-kD protein consisting of a KS, an AT, an ACP, and an inactive KR domain. Two interdomain boundaries were identified via limited proteolysis, which led to the production of a 90-kD KS-AT, a 142-kD KS-AT-KR(0), and a 10-kD ACP as structurally stable stand-alone proteins. Each protein was shown to possess the requisite catalytic properties. In the presence of the ACP, both the KS-AT and the KS-AT-KR(0) proteins were able to catalyze chain elongation as well as the intact parent module. Separation of the KS from the ACP enabled direct interrogation of the KS specificity for both the nucleophilic substrate and the partner ACP. Malonyl and methylmalonyl extender units were found to be equivalent substrates for chain elongation. Whereas ACP2 and ACP4 of DEBS could be exchanged for ACP3, ACP6 was a substantially poorer partner for the KS. Remarkably, the newly identified proteolytic sites were conserved in many PKS modules, raising the prospect of developing improved methods for the construction of hybrid PKS modules by engineering domain fusions at these interdomain junctions.  相似文献   

6.
《Gene》1998,216(2):255-265
Five clustered polyketide synthase (PKS) genes, rifArifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69–79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The β-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86–90%) and to other PKSs (78–85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51–60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246–248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the β-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a β-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B.  相似文献   

7.
Precursor-directed biosynthesis has been shown to be a powerful tool for the production of polyketide analogues that would be difficult or cost prohibitive to produce from medicinal chemistry efforts alone. It has been most extensively demonstrated using a KS1 null mutation (KS10) to block the first round of condensation in the biosynthesis of the erythromycin polyketide synthase (DEBS) for the production of analogues of its aglycone, 6-deoxyerythronolide B (6-dEB). Here we show that removing the DEBS loading domain and first module (mod1Δ), rather than using the KS10 system, can lead to an increase in the utilization of some chemical precursors and production of 6-dEB analogues (R-6dEB) in both Streptomyces coelicolor and Saccharopolyspora erythraea. While the difference in utilization of the precursor was diketide specific, in strains fed (2R*, 3S*)-5-fluoro-3-hydroxy-2-methylpentanoate N-propionylcysteamine thioester, twofold increases in both utilization of the diketide and 15-fluoro-6dEB (15F-6dEB) production were observed in S. coelicolor, and S. erythraea exhibited a tenfold increase in production of 15-fluoro-erythromycin when utilizing the mod1Δ rather than the KS10 system.  相似文献   

8.
Chain initiation on many modular polyketide synthases is mediated by acyl transfer from the CoA ester of a dicarboxylic acid, followed by decarboxylation in situ by KSQ, a ketosynthase-like decarboxylase domain. Consistent with this, the acyltransferase (AT) domains of all KSQ-containing loading modules are shown here to contain a key arginine residue at their active site. Site-specific replacement of this arginine residue in the oleandomycin (ole) loading AT domain effectively abolished AT activity, consistent with its importance for catalysis. Substitution of the ole PKS loading module, or of the tylosin PKS loading module, for the erythromycin (ery) loading module gave polyketide products almost wholly either acetate derived or propionate derived, respectively, instead of the mixture found normally. An authentic extension module AT domain, rap AT2 from the rapamycin PKS, functioned appropriately when engineered in the place of the ole loading AT domain, and gave rise to substantial amounts of C13-methylerythromycins, as predicted. The role of direct acylation of the ketosynthase domain of ex-tension module 1 in chain initiation was confirmed by demonstrating that a mutant of the triketide synthase DEBS1-TE, in which the 4'-phosphopante-theine attachment site for starter acyl groups was specifically removed, produced triketide lactone pro-ducts in detectable amounts.  相似文献   

9.
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria.  相似文献   

10.
Mycinamicin, composed of a branched lactone and two sugars, desosamine and mycinose, at the C-5 and C-21 positions, is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against Gram-positive bacteria. The nucleotide sequence (62 kb) of the mycinamicin biosynthetic gene cluster, in which there were 22 open reading frames (ORFs), was completely determined. All of the products from the 22 ORFs are responsible for the biosynthesis of mycinamicin II and self-protection against the compounds synthesized. Central to the cluster is a polyketide synthase locus (mycA), which encodes a seven-module system comprised of five multifunctional proteins. Immediately downstream of mycA, there is a set of genes for desosamine biosynthesis (mydA-G and mycB). Moreover, mydH, whose product is responsible for the biosynthesis of mycinose, lies between mydA and B. On the other hand, eight ORFs were detected upstream of the mycinamicin PKS gene. The myrB, mycG, and mycF genes had already been characterized by Inouye et al. The other five ORFs (mycCI, mycCII, mydI, mycE, and mycD) lie between mycA1 and mycF, and these five genes and mycF are responsible for the biosynthesis of mycinose. In the PKS gene, four regions of KS and AT domains in modules 1, 4, 5, and 6 indicated that it does not show the high GC content typical for Streptomyces genes, nor the unusual frame plot patterns for Streptomyces genes. Methylmalonyl-CoA was used as substrate in the functional units of those four modules. The relationship between the substrate and the unusual frame plot pattern of the KS and AT domains was observed in the other PKS genes, and it is suggested that the KS-AT original region was horizontally transferred into the PKS genes on the chromosomal DNA of several actinomycetes strains.  相似文献   

11.
A previously unidentified set of genes encoding a modular polyketide synthase (PKS) has been sequenced in Saccharopolyspora erythraea, producer of the antibiotic erythromycin. This new PKS gene cluster (pke) contains four adjacent large open reading frames (ORFs) encoding eight extension modules, flanked by a number of other ORFs which can be plausibly assigned roles in polyketide biosynthesis. Disruption of the pke PKS genes gave S. erythraea mutant JC2::pSBKS6, whose growth characteristics and pattern of secondary metabolite production did not apparently differ from the parent strain under any of the growth conditions tested. However, the pke PKS loading module and individual pke acyltransferase domains were shown to be active when used in engineered hybrid PKSs, making it highly likely that under appropriate conditions these biosynthetic genes are indeed expressed and active, and synthesize a novel polyketide product.  相似文献   

12.
Sequence comparisons of multiple acyltransferase (AT) domains from modular polyketide synthases (PKSs) have highlighted a correlation between a short sequence motif and the nature of the extender unit selected. When this motif was specifically altered in the bimodular model PKS DEBS1-TE of Saccharopolyspora erythraea, the products included triketide lactones in which acetate extension units had been incorporated instead of propionate units at the predicted positions. We also describe a cassette system for convenient construction of hybrid modular PKSs based on the tylosin PKS in Streptomyces fradiae and demonstrate its use in domain and module swaps.  相似文献   

13.
Jiralerspong S  Rangaswamy V  Bender CL  Parry RJ 《Gene》2001,270(1-2):191-200
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant pathogen Pseudomonas syringae. The CFA polyketide synthase (PKS) consists of two open reading frames (ORFs) that encode type I multifunctional proteins and several ORFs that encode monofunctional proteins. Sequence comparisons of the modular portions of the CFA PKS with other prokaryotic, modular PKSs elucidated the boundaries of the domains that are involved in the individual stages of polyketide assembly. The two β-ketoacyl:acyl carrier protein synthase (KS) domains in the modular portion of the CFA PKS exhibit a high degree of similarity to each other (53%), but are even more similar to the KS domains of DEBS, RAPS, and RIF. Cfa6 possesses two acyltransferases- AT0, which is associated with a loading domain, and AT1, which uses ethylmalonyl-CoA (eMCoA) as a substrate for chain extension. Cfa7 contains an AT that uses malonyl-CoA as a substrate for chain extension. The Cfa6 AT0 shows 35 and 32% similarity to the DEBS1 and NidA1 AT0s, respectively, and 32 and 36% similarity to the Cfa6 and Cfa7 AT1s. Sequence motifs have previously been identified that correlate with AT substrates. The motifs in Cfa6 AT1 were found to correlate reasonably well with those predicted for methylmalonyl-CoA (mMCoA) ATs. The motifs in the AT of Cfa7 correlated more poorly with those predicted for MCoA ATs. Three ACP domains occur in the modular proteins of the COR PKS. The loading domain-associated ACP0 showed 38% similarity to the loading domain ACP0s of DEBS1 and NidA1 and 32–36% similarity to the two module-associated ACPs of the COR PKS. It exhibited a higher degree of similarity to the module-associated ACPs of RAPS. The two module-associated ACPs show 39% similarity to each other, but appear more closely related to module-associated ACP domains in RAPS and RIFS. Furthermore, the DH and KR domains of Cfa6 and Cfa7 show greater similarity to DH and KR domains in RAPS and RIFS than to each other. The CFA PKS includes a thioesterase domain (TE I) that resides at the C-terminus of Cfa7 and a second thioesterase, which exists as a separate ORF (Cfa9, a TE II). Analysis of a Cfa7 thioesterase mutant demonstrated that the TE domain is required for the production of CFA. The co-existence of TE domains within modular PKSs along with physically separated, monofunctional TEs (TE IIs) has been reported for a number of modular polyketide and non-ribosomal peptide synthases (NRPS). An analysis of the two types of thioesterases using Clustal X yielded a dendrogram showing that TE IIs from PKSs and NRPSs are more closely related to each other than to domain TEs from either PKSs or NRPSs. Furthermore, the dendrogram indicates that both types of TE IIs are more closely related to TE domains associated with PKSs than to TE domains in NRPSs. Finally, the overall % G+C content and the % G+C content at the third codon for all of the PKS genes in the COR cluster suggest that these genes may have been recruited from a gram-positive bacterium.  相似文献   

14.
Two structurally related polyene macrolides are produced by Streptomyces diastaticus var. 108: rimocidin (3a) and CE-108 (2a). Both bioactive metabolites are biosynthesized from the same pathway through type I polyketide synthases by choosing a starter unit either acetate or butyrate, resulting in 2a or 3a formation, respectively. Two additional polyene amides, CE-108B (2b) and rimocidin B (3b), are also produced “in vivo” when this strain was genetically modified by transformation with engineered SCP2*-derived vectors carrying the ermE gene. The two polyene amides, 2b and 3b, showed improved pharmacological properties, and are generated by a tailoring activity involved in the conversion of the exocyclic carboxylic group of 2a and 3a into their amide derivatives. The improvement on some biological properties of the resulting polyenes, compared with that of the parental compounds, encourages our interest for isolating the tailoring gene responsible for the polyene carboxamide biosynthesis, aimed to use it as tool for generating new bioactive compounds. In this work, we describe the isolation from S. diastaticus var. 108 the corresponding gene, pcsA, encoding a polyene carboxamide synthase, belonging to the Class II glutamine amidotransferases and responsible for “in vivo” and “in vitro” formation of CE-108B (2b) and rimocidin B (3b). The fermentation broth from S. diastaticus var. 108 engineered with the appropriate pcsA gene construction, showed the polyene amides to be the major bioactive compounds.  相似文献   

15.
A Streptomyces strain UK10 was isolated from Ukrainian soil and identified by taxonomical studies as Streptomyces arenae var ukrainiana. HA-2-91 was isolated from the biomass of S. arenae var ukrainiana and is supposedly a polyene macrolide antibiotic belonging to the tetraene group. HA-2-91 showed promising antifungal activity (in vitro) against yeasts and filamentous fungi, including plant pathogens and dermatophytes and was found to be less toxic in mice than nystatin and rimocidin.  相似文献   

16.
The cephabacins produced by Lysobacter lactamgenus are beta-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, beta-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of His6-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-LAla- L-3H-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/ PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with 14C-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.  相似文献   

17.
Here, the term “module” is redefined for trans‐acyltransferase (trans‐AT) assembly lines to agree with how its domains cooperate and evolutionarily co‐migrate. The key domain in both the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) modules of assembly lines is the acyl carrier protein (ACP). ACPs not only relay growing acyl chains through the assembly line but also collaborate with enzymes in modules, both in cis and in trans, to add a specific chemical moiety. A ketosynthase (KS) downstream of ACP often plays the role of gatekeeper, ensuring that only a single intermediate generated by the enzymes of a module is passed downstream. Bioinformatic analysis of 526 ACPs from 33 characterized trans‐AT assembly lines reveals ACPs from the same module type generally clade together, reflective of the co‐evolution of these domains with their cognate enzymes. While KSs downstream of ACPs from the same module type generally also clade together, KSs upstream of ACPs do not—in disagreement with the traditional definition of a module. Beyond nomenclature, the presented analysis impacts our understanding of module function, the evolution of assembly lines, pathway prediction, and assembly line engineering.  相似文献   

18.
In an attempt to construct a strain that produces doramectin, the loading module of Ave polyketide synthase (PKS) from Streptomyces avermitilis M1 was replaced with a cyclohexanecarboxylic (CHC) unique loading module from phoslactomycin PKS. Additionally, the CHC-CoA biosynthetic gene cassette was introduced into the engineered strain, which provided the precursor for directed biosynthesis of doramectin. The doramectin production ability of the final mutant S. avermitilis TG2002 was increased about six times and the ratio of Dor to Ave was enhanced 300 times more than the original strain.  相似文献   

19.
Recombinant microbial whole-cell biocatalysis is a valuable approach for producing enantiomerically pure intermediates for the synthesis of complex molecules. Here, we describe a method to produce polyketide intermediates possessing multiple stereogenic centers by combining chemobiosynthesis and engineered mini-polyketide synthases (PKSs). Chemobiosynthesis allows the introduction of unnatural moieties, while a library of synthetic bimodular PKSs expressed from codon-optimized genes permits the introduction of a variety of ketide units. To validate the approach, intermediates for the synthesis of trans-9,10-dehydroepothilone D were generated. The designer molecules obtained have the potential to greatly reduce the manufacturing cost of epothilone analogues, thus facilitating their commercial development as therapeutic agents.Whole-cell biocatalysis is a rapidly developing technology used to assist in developing synthetic routes to complex molecules in the pharmaceutical industry. The exquisite regio- and stereoselectivity of enzymes allows the facile introduction of stereogenic centers with complete enantiomeric control, which may result in a significant reduction in the number of synthesis steps and therefore the final production cost (2, 14, 18). In addition, biocatalysis is one of the greenest technologies currently available; since the protection and deprotection of functional groups are not required, high- and low-temperature reactions can be circumvented, and organic solvents are not used (17).Type I modular polyketide synthase (PKS) genes determine the biosynthesis of valuable polyketide natural products, such as erythromycin, epothilone, and many others. These genes encode enzymes consisting of modules of active sites (domains) that build the carbon chain of the final product in a stepwise fashion using acyl-coenzyme A (CoA) starter and extender units (15).Most of the known PKSs are microbial enzymes and possess a variable number of modules (Mod) preceded by a loading didomain (LM). The LM is composed of an acyl transferase (AT) domain that selects the starter acyl-CoA unit and an acyl carrier protein (ACP) domain that receives the acyl group from the loading AT. The acyl group then is transferred to the first extender module and successively to downstream modules. All extender modules contain an essential set of three domains: ketosynthase (KS), AT, and ACP. The KS receives the acyl unit from the preceding module, while the AT transfers an appropriate acyl extender unit from its CoA ester to the ACP. The KS then catalyzes a condensation between the acyl-KS and the α-carbon of the extender acyl-ACP to give an acyl-ACP. Additional domains may be present in some modules and are responsible for the reduction of the keto groups of the growing polyketide chain. For example, modules may contain a ketoreductase (KR) that reduces the β-keto group stereospecifically to an alcohol. At the end of the assembly line, a thioesterase (TE) domain on the C terminus of the last extender module cleaves the polyketide chain from the PKS and converts it to a lactone.Thus, the structure of the two-carbon unit dictated by a module is determined by the specificity of its AT domain, its complement of reductive domains, and carbon branch stereochemistry; the order of modules determines the sequence of two-carbon units in the polyketide product, and the number of modules determines carbon chain length.Since the early 1990s, many research groups have been interested in understanding the rules of module-module interactions so as to genetically engineer microorganisms to create novel polyketides (7). An ultimate goal is to produce complex molecules by creating synthetic PKSs to be used directly as drugs or as lead compounds for chemical optimization. Meanwhile, even the combination of a few PKS modules can produce molecules with multiple chiral centers (up to two per module) that are difficult to obtain by chemical synthesis (5, 21), thus assisting in the production of complex molecules currently made by total chemical synthesis.Although the biosynthesis of polyketides found in nature is confined to those that can be assembled with natural acyl-CoA precursors, this limitation often can be overcome using chemobiosynthesis (3, 9, 12, 20). Here, unusual chemical moieties may be introduced as the first unit of a polyketide chain by feeding a PKS that has been disabled or deleted in an early extension module with a chemically synthesized carboxylic acid N-acetyl-cysteamine thioester (SNAC). In successful cases, the synthetic thioester acylates the KS of the module immediately downstream of the disabled/deleted one and is faithfully lengthened by subsequent extender modules.There are several challenges in using chemobiosynthesis as a general approach to making a desired polyketide. First, it is not possible to rationally predict whether a particular SNAC will be accepted and processed by a given PKS module and, if it is, whether the extension of the unnatural starter unit will provide an acceptable yield of product. Second, if the SNAC is extended by the first module, it cannot be predicted whether the foreign polyketide chain will be extended by subsequent modules. Finally, it is improbable that a naturally occurring PKS will possess the appropriate sequence of modules necessary to extend the SNAC and produce the desired unnatural polyketide, hence the need for imaginative genetic engineering approaches to overcome these challenges.The epothilones, a family of polyketide compounds naturally produced by the myxobacterium Sorangium cellulosum, have emerged as promising anti-cancer agents (10, 13, 19). The potent synthetic analogue trans-9,10-dehydroepothilone D (Fig. (Fig.11 A), which is in human clinical trials, currently is prepared by complete chemical synthesis requiring 23 operations to provide an overall yield of only about 1% (4). The analogue 26-trifluoro trans-9,10-dehydroepothilone D, another promising clinical candidate (16), likewise is difficult to prepare. Biosynthetic approaches to making such analogues are especially challenging, because the C-4-gem-dimethyl group and the double bond at C-9-C-10 are rarely found in natural polyketides, and the routes for their incorporation into engineered biosynthetic pathways are largely unknown.Open in a separate windowFIG. 1.(A) Scheme for the synthesis of trans-9,10-dehydroepothilone D. (B) Production of tetraketide intermediate 3 by the double extension of SNAC 1 with two D-type modules, 4a by extension with a D-G bimodular PKS and 4b by extension with a D-H bimodular PKS. (C) Structures of two-carbon units added by the extension modules used in this work. D-type modules: eryM2, eryM5, eryM6, gldM3, sorM6, lepM10, rifM5, and epoM7; G-type modules: eryM3, rapM3, lepM4, and rapM6; H-type module: pikM6. ery, erythromycin; sor, soraphen; rap, rapamycin; gdm, geldanamycin; rif, rifamycin; lep, leptomycin.In this work, we describe an approach to create novel polyketides with an unusual starter unit and an engineered pattern of extension. Our strategy was validated by the biosynthesis of intermediates that facilitate the synthesis of epothilone analogues.  相似文献   

20.
The genetic manipulation of the biosynthesis of fungal reduced polyketides has been challenging due to the lack of knowledge on the biosynthetic mechanism, the difficulties in the detection of the acyclic, non-aromatic metabolites, and the complexity in genetically manipulating filamentous fungi. Fumonisins are a group of economically important mycotoxins that contaminate maize-based food and feed products worldwide. Fumonisins contain a linear dimethylated C18 chain that is synthesized by Fum1p, which is a single module polyketide synthase (PKS). Using a genetic system that allows the specific manipulation of PKS domains in filamentous fungus Fusarium verticillioides, we replaced the KS domain of fumonisin FUM1 with the KS domain of T-toxin PKS1 from Cochliobolus heterostrophus. Although PKS1 synthesizes different polyketides, the F. verticillioides strain carrying the chimeric PKS produced fumonisins. This represents the first successful domain swapping in PKSs for fungal reduced polyketides and suggests that KS domain alone may not be sufficient to control the product’s structure. To further test if the whole fumonisin PKS could be functionally replaced by a PKS that has a similar domain architecture, we replaced entire FUM1 with PKS1. This strain did not produce any fumonisin or new metabolites, suggesting that the intrinsic interactions between the intact PKS and downstream enzymes in the biosynthetic pathway may play a role in the control of fungal reduced polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号