首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HXB2 is primarily used as a template strain in developing HIV vaccines in Europe and the US. However,it is not yet known whether the strain can induce strong HIV-specific CD8+ T cell responses in Chinese HIV/AIDS patients. In the present study,two groups of subjects were investigated:9 AIDS patients and 7 long-term nonprogressors (LTNPs). HIV-specific CD8+ T cell responses were examined in all patients through the ELISPOT assay. CD4+ T cell counts,CD8+ T cell counts,viral load and HIV subtype of each patien...  相似文献   

2.
Influenza A virus-specific CD8+ T cell responses in H2(b) mice are characterized by reproducible hierarchies. Compensation by the D(b)PB1-F2(62) epitope is apparent following infection with a variant H3N2 virus engineered to disrupt the prominent D(b)NP(366) and D(b)PA(224) epitopes (a double knockout or DKO). Analysis with a "triple" knockout (TKO) virus, which also compromises D(b)PB1-F2(62), did not reveal further compensation to the known residual, minor, and predicted epitopes. However, infection with this deletion mutant apparently switched protective immunity to an alternative Ab-mediated pathway. As expected, TKO virus clearance was significantly delayed in Ab-deficient MHC class II(-/-) and Ig(-/-) mice, which were much more susceptible following primary, intranasal infection with the TKO, but not DKO, virus. CD8+ T cell compensation was detected in DKO, but not TKO, infection of Ig-deficient mice, suggestive of cooperation among CD8+ T cell responses. However, after priming with a TKO H1N1 mutant, MHC II(-/-) mice survived secondary intranasal exposure to the comparable H3N2 TKO virus. Such prime/challenge experiments with the DKO and TKO viruses allowed the emergence of two previously unknown epitopes. The contrast between the absence of compensatory effect following primary exposure and the substantial clonal expansion after secondary challenge suggests that the key factor limiting the visibility of these "hidden" epitopes may be very low naive T cell precursor frequencies. Overall, these findings suggest that vaccine approaches using virus vectors to deliver an Ag may be optimized by disrupting key peptides in the normal CD8+ T cell response associated with common HLA types.  相似文献   

3.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

4.
First and foremost among the many factors that influence epitope presentation are the degradation of Ag, which results in peptide liberation, and the presence of HLA class I molecules able to present the peptides to T lymphocytes. To define the regions of HIV-1 Nef that can provide multiple T cell epitopes, we analyzed the Nef sequence and determined that there are 73 peptides containing 81 HLA-binding motifs. We tested the binding of these peptides to six common HLA molecules (HLA-A2, -A3, -A24, -B7, -B8, and -B35), and we showed that most of them were efficient binders (54% of motifs), especially peptides associating with HLA-A3, -B7/35, and -B8 molecules. Nef peptides most frequently recognized by T cells of HIV-1-infected individuals were 90-97, 135-143, 71-81, 77-85, 90-100, 73-82, and 128-137. The frequency of T cell recognition was not directly related to the strength of peptide-HLA binding. The generation of Nef epitopes is crucial; therefore, we investigated the digestion by the 20S proteasome of a large peptide, Nef(66-100). This fragment was efficiently cleaved, and NH(2)-terminally extended precursors of epitope 71-81 were recognized by T cells of an HIV-1-infected individual. These results suggest that a high frequency of T cell recognition may depend on proteasome cleavage.  相似文献   

5.
The aim of this study was to characterize differences between naive and primed CD8 T cells. Our results show that (i) naive and primed CD8 T cells display similar activation thresholds, with no direct evidence for a difference in their TCR signals, and (ii) primed cells differ mainly in their capacity to secrete IFN-gamma. A comparison of the two populations at the single-cell level demonstrated that the increased production of IFN-gamma by the primed cell subset is due to a larger proportion of single cells that are able to synthesize this cytokine early following activation. These results indicate that the intrinsic effector capabilities of individual CD8 T cells expressing the same TCR are heterogeneous and that cells with identical antigen specificity but increased effector capacities are generated or selected during the primary response.  相似文献   

6.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   

7.
Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans.  相似文献   

8.
Normal tissue and tumour grafts expressing the same alloantigens often elicit distinct immune responses whereby only normal tissue is rejected. To investigate the mechanisms that underlie these distinct outcomes, we compared the responses of adoptively transferred HY-specific conventional (CD8 and CD4) or regulatory T (Treg) cells in mice bearing HY-expressing tumour, syngeneic male skin graft or both. For local T cell priming, T cell re-circulation, graft localization and retention, skin grafts were more efficient than tumours. Skin grafts were also capable of differentiating CD4 T cells into functional Th1 cells. Donor T cell responses were inversely correlated with tumour progression. When skin graft and tumour transplants were performed sequentially, contemporary graft and tumour burden enhanced CD8 but reduced CD4 T cell responses causing accelerated skin-graft rejection without influencing tumour growth. Although both skin grafts and tumours were able to expand HY-specific Treg cells in draining lymph node (dLN), the proportion of tumour-infiltrating Treg cells was significantly higher than that within skin grafts, correlating with accelerated tumour growth. Moreover, there was a higher level of HY antigen presentation by host APC in tumour-dLN than in graft-dLN. Finally, tumour tissues expressed a significant higher level of IDO, TGFβ, IL10 and Arginase I than skin grafts, indicating that malignant but not normal tissue represents a stronger immunosuppressive environment. These comparisons provide important insight into the in vivo mechanisms that conspire to compromise tumour-specific adaptive immunity and identify new targets for cancer immunotherapy.  相似文献   

9.
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.  相似文献   

10.
CD8 T cell responses to viral infections in sequence   总被引:2,自引:0,他引:2  
Our current understanding of virus-specific T cell responses has been shaped by model systems with mice, where naive animals are infected with a single viral pathogen. Paradigms derived from such models, however, may not always be applicable to a natural setting, where a host is exposed to numerous pathogens over its lifetime. Accumulating data in animal models and with some human diseases indicate that a host's prior history of infections can impact the specificity of future CD8 T cell responses, even to unrelated viruses. This can have both beneficial and detrimental consequences for the host, including altered clearance of virus, distinct forms of immunopathology, and substantial changes in the pool of memory T cells. Here we will describe the characteristics of CD8 T cells and the dynamics of their response to heterologous viral infections in sequence.  相似文献   

11.
12.
Cellular immune responses play an important role in the control of HIV replication. Although clear evidence exists on its influence during acute HIV infection, its role during the chronic phase of the disease remains controversial. This review describes the cellular immune responses elicited against HIV mediated by CD8(+) T lymphocytes, and the mechanisms by which these cells are inefficient to completely control HIV replication and halt disease progression. The role of escape mutations as one of the most relevant mechanisms HIV has developed to evade host cellular immune responses is highlighted.  相似文献   

13.
CD8+ T cells have been implicated as critical effector cells in protection against the pre-erythrocytic stage of malaria in mice and humans following irradiated sporozoite immunization. Immunization experiments in animal models by several investigators have suggested different strategies for vaccination against malaria and many of the targets from liver stage malaria antigens have been shown to be immunogenic and to protect mice from the sporozoite challenge. Several prime/boost protocols with replicating vectors, such as vaccinia/influenza, with non-replicating vectors, such as recombinant particles derived from yeast transposon (Ty-particles) and modified vaccinia virus Ankara, and DNA, significantly enhanced CD8+ T cell immunogenicity and also the protective efficacy against the circumsporosoite protein of Plasmodium berghei and P. yeti. Based on these experimental results the development of a CD8+ T cell inducing vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines.  相似文献   

14.
CD8+ T cells induced by immunization with Plasmodium sporozoites play a major role in protective immunity against parasite infection, inhibiting the development of liver stages. The activation of these T cells is initiated just a few hours after exposure to parasites and progresses rapidly through a tightly regulated program. Effector functions in CD8+ T are detectable as early as 24 h after immunization and this event is followed 24-48 h later by an accelerated expansion of the CD8+ T cell numbers which reaches a peak 4-5 days after priming. Concomitantly with the development of anti-parasite activity, CD8+ T cells acquire a self-regulatory role limiting the magnitude of the CD8+ T cell response. Once activated, CD8+ T cells strongly inhibit the priming of additional naive CD8+ T cells by competing for antigen presenting cells. On days 6-8 after immunization, a sudden contraction of this T cell response occurs due to programmed cell death of 70-80% of the activated cells. After this contraction phase, 15-20 days after priming, activated cells establish memory populations. The development and maintenance of these memory populations strictly depends on the presence of CD4+ T cells and IL-4, and probably also IL-7, IL-15 and IL-2. These cytokines, some of which are produced by CD4+ T cells, provide signals to prevents apoptosis and also induce the differentiation of memory sub-populations, most of which acquire definitive phenotypes 20-30 days after immunization.  相似文献   

15.
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines.  相似文献   

16.
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.  相似文献   

17.
BACKGROUND: Vaccines capable of inducing CD8 T cell responses to antigens expressed by tumor cells are considered as attractive choices for the treatment and prevention of malignant diseases. Our group has previously reported that immunization with synthetic peptide corresponding to a CD8 T cell epitope derived from the rat neu (rNEU) oncogene administered together with a Toll-like receptor agonist as adjuvant, induced immune responses that translated into prophylactic and therapeutic benefit against autochthonous tumors in an animal model of breast cancer (BALB-neuT mice). DNA-based vaccines offer some advantages over peptide vaccines, such as the possibility of including multiple CD8 T cell epitopes in a single construct. MATERIALS AND METHODS: Plasmids encoding a fragment of rNEU were designed to elicit CD8 T cell responses but no antibody responses. We evaluated the use of the modified plasmids as DNA vaccines for their ability to generate effective CD8 T cell responses against breast tumors expressing rNEU. RESULTS: DNA-based vaccines using modified plasmids were very effective in specifically stimulating tumor-reactive CD8 T cell responses. Moreover, vaccination with the modified DNA plasmids resulted in significant anti-tumor effects that were mediated by CD8 T cells without the requirement of generating antibodies to the product of rNEU. CONCLUSIONS: DNA vaccination is a viable alternative to peptide vaccination to induce potent anti-tumor CD8 T cell responses that provide effective therapeutic benefit. These results bear importance for the design of DNA vaccines for the treatment and prevention of cancer.  相似文献   

18.
Cross-priming is the process in which Ag-presenting dendritic cells (DCs) acquire, process, and present Ags scavenged from other cells, and use these cells to activate naive CD8 T cells. Cross-priming of cognate CD8 cells can result in either tolerance or immunity, depending upon the activation status of the Ag-presenting DC. Previous studies have shown that nominal peptide is inefficiently cross-presented and that proteins and large polypeptides that require proteasomal processing are the main source of naturally cross-presented Ags. In this study we show that N-terminal extension of nominal peptide by as few as three residues is sufficient to produce a substrate for TAP-dependent cross-presentation that is highly efficient in cross-priming murine CD8 T cells in vivo. On a molar basis, cross-priming with 3-mer-extended peptide is 20-fold more efficient than priming with intact protein. This method of peptide extension should prove of great value in facilitating in vivo studies of CD8 immunity and tolerance that rely on cross-presentation.  相似文献   

19.
The concept of peptide‐based vaccines against cancer has made noteworthy progress. Metadherin (MTDH) overexpression and its role in the development of diverse cancers make it an attractive target for cancer immunotherapy. In the current study, six different T cell epitope prediction tools were run to identify MTDH peptides with multiple immunogenic regions. Further, molecular docking was performed to assess HLA‐peptide binding interactions. Nine and eleven peptides fragments containing multiple CD8 + and CD4 + T‐cell epitopes, ranging from 9 to 20 amino acids, respectively, were obtained using a consensus immunoinformatics approach. The three peptides that were finally identified as having overlapping CD4 + and CD8 + T‐ cell epitopes are ARLREMLSVGLGFLRTELG, FLLGYGWAAACAGAR, YIDDEWSGLNGLSSADP. These peptides were found to not only have multiple T cell epitopes but also to have binding affinity with wide HLA molecules. A molecular docking study revealed that the predicted immunogenic peptides (with single or multiple T cell epitopes) of MTDH have comparable binding energies with naturally bound peptides for both HLA classes I and II. Thus, these peptides have the potential to induce immune responses that could be considered for developing synthetic peptide vaccines against multiple cancers.  相似文献   

20.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号