首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Detailed structure activity relationships (SARs) for a series of dibasic human tryptase inhibitors are presented. The structural requirements for potent inhibitory activity are remarkably broad with a range of core template modifications being well tolerated. Optimized inhibitors demonstrate potent anti-asthmatic activity in a sheep model of allergic asthma. APC-2059, a dibasic tryptase inhibitor with subnanomolar activity, has been advanced to phase II clinical trials for the treatment of both psoriasis and ulcerative colitis.  相似文献   

2.
A survey of charged groups and linkers for a series of symmetrical and unsymmetrical dibasic inhibitors is described, leading to several classes of potent and selective inhibitors. In particular, the benzamidine functionality was identified as the most potent charged group investigated.  相似文献   

3.
4.
Tryptase from human mast cells has been shown (in vitro) to catalyze the destruction of fibrinogen and high-molecular-weight kininogen as well as the activation of C3a and collagenase. Although large amounts of tryptase are released in tissues by degranulating mast cells and levels as high as 1000 ng/ml have been measured in the circulation following systemic anaphylaxis, no specific physiologic inhibitor has yet been found for the protease. The current work tests several more inhibitors for their effects on tryptase and examines any effect of tryptase on these inhibitors. First, antileukoprotease and low-molecular-weight elastase inhibitor from human lung and hirudin and antithrombin III had no effect on tryptase activity in vitro. Second, the possibility that tryptase, being insensitive to the effects of inhibitors, might instead destroy them was also considered. Tryptase failed to cleave and inactivate antileukoprotease, low-molecular-weight elastase inhibitor, alpha 1 protease inhibitor, alpha 2 macroglobulin, and antithrombin III. Third, based on the knowledge that tryptase stability is regulated by its interaction with heparin, antithrombin III was used as a model heparin-binding protein to demonstrate that a protein competitor for heparin-binding sites, presumably by displacement of tryptase, destabilizes this enzyme. Conversely, tryptase, in excess, blocked the binding of antithrombin III to heparin, thereby attenuating the heparin-mediated inhibition of thrombin by antithrombin III.  相似文献   

5.
We have explored a series of spirocyclic piperidine amide derivatives (5) as tryptase inhibitors. Thus, 4 (JNJ-27390467) was identified as a potent, selective tryptase inhibitor with oral efficacy in two animal models of airway inflammation (sheep and guinea pig asthma models). An X-ray co-crystal structure of 4 x tryptase revealed a hydrophobic pocket in the enzyme's active site, which is induced by the phenylethynyl group and is comprised of amino acid residues from two different monomers of the tetrameric protein.  相似文献   

6.
Heparin antagonists are potent inhibitors of mast cell tryptase   总被引:7,自引:0,他引:7  
Tryptase may be a key mediator in mast cell-mediated inflammatory reactions. When mast cells are activated, they release large amounts of these tetrameric trypsin-like serine proteases. Tryptase is present in a macromolecular complex with heparin proteoglycan where the interaction with heparin is known to be essential for maintaining enzymatic activity. Recent investigations have shown that tryptase has potent proinflammatory activity, and inhibitors of tryptase have been shown to modulate allergic reactions in vivo. Many of the tryptase inhibitors investigated previously are directed against the active site. In the present study we have investigated an alternative approach for tryptase regulation. We show that the heparin antagonists Polybrene and protamine are potent inhibitors of both human lung tryptase and of recombinant mouse tryptase (mouse mast cell protease 6). Protamine inhibited tryptase in a competitive manner whereas Polybrene showed noncompetitive inhibition kinetics. Treatment of tetrameric, active tryptase with Polybrene caused dissociation into monomers, accompanied by complete loss of enzymatic activity. The present report thus suggests that heparin antagonists potentially may be used in treatment of mast cell-mediated diseases such as asthma.  相似文献   

7.
A new series of novel mast cell tryptase inhibitors is reported, which features the use of an indole structure as the hydrophobic substituent on a m-benzylaminepiperidine template. The best members of this series display good in vitro activity and excellent selectivity against other serine proteases.  相似文献   

8.
Truncation of potent and selective dibasic inhibitors afforded monocharged inhibitors of human mast-cell tryptase. Using two classes of analogues as lead structures, several monocharged derivatives were identified with K(i) values ranging from 0.084 to 0.21 microM against the enzyme.  相似文献   

9.
There has long been conjecture over the degree to which there may be structural and functional heterogeneity in the tetrameric serine protease tryptase (EC 3.4.21.59), a major mediator of allergic inflammation. We have applied 2D gel electrophoresis to analyze the extent, nature, and variability of this heterogeneity in lysates of mast cells isolated from lung and skin, and in preparations of purified tryptase. Gels were silver stained, or the proteins transferred to nitrocellulose blots and probed with either tryptase-specific monoclonal antibodies or various lectins. Tryptase was the major protein constituent in mast cell lysates, and presented as an array of 9-12 diffuse immunoreactive spots with molecular masses ranging from 29 to 40 kDa, and pI values from 5.1 to 6.3. Although the patterns obtained for lung and skin tryptase were broadly similar, differences were observed between tissues and between individual donors. Lectin binding studies indicated the presence of mono-antennary or bi-antennary complex-type oligosaccharide with varying degrees of sialylation. Deglycosylation with protein-N-glycosidase F (PNGase F) reduced the size of both lung and skin tryptase, while incubation with PNGase F or neuraminidase narrowed the pI range, indicating variable degrees of glycosylation as a major contributor to the size and charge heterogeneity. Comparison of different purified preparations of lung and skin tryptase revealed no significant difference in pH profiles, but differences were seen in reactivity towards a range of chromogenic substrates, with substantial differences in Km, kcat and degree of cooperativity. Mathematical modeling indicated that the variety in kinetics parameters could not result solely from the sum of varying amounts of isoforms obeying Michaelis-Menten kinetics but with different values of Km and kcat. The heterogeneity demonstrated for tryptase in these studies suggests that there are important differences in tryptase function in different tissues.  相似文献   

10.
Migrating cells degrade pericellular matrices and basement membranes. For these purposes cells produce a number of proteolytic enzymes. Mast cells produce two major proteinases, chymase and tryptase, whose physiological functions are poorly known. In the present study we have analyzed the ability of purified human mast cell tryptase to digest pericellular matrices of human fibroblasts. Isolated matrices of human fibroblasts and fibroblast conditioned medium were treated with tryptase, and alterations in the radiolabeled polypeptides were observed in autoradiograms of sodium dodecyl sulphate polyacrylamide gels. It was found that an M(r) 72,000 protein was digested to an M(r) 62,000 form by human mast cell tryptase while the plasminogen activator inhibitor, PAI-1, was not affected. Cleavage of the M(r) 72,000 protein could be partially inhibited by known inhibitors of tryptase but not by aprotinin, soybean trypsin inhibitor, or EDTA. Fibroblastic cells secreted the M(r) 72,000 protein into their medium and it bound to gelatin as shown by analysis of the medium by affinity chromatography over gelatin-Sepharose. The soluble form of the M(r) 72,000 protein was also susceptible to cleavage by tryptase. Analysis using gelatin containing polyacrylamide gels showed that both the intact M(r) 72,000 and the M(r) 62,000 degraded form of the protein possess gelatinolytic activity after activation by sodium dodecyl sulphate. Immunoblotting analysis of the matrices revealed the cleavage of an immunoreactive protein of M(r) 72,000 indicating that the protein is related to type IV collagenase. Further analysis of the pericellular matrices indicated that the protease sensitive extracellular matrix protein fibronectin was removed from the matrix by tryptase in a dose-dependent manner. Fibronectin was also susceptible to proteolytic degradation by tryptase. The data suggest a role for mast cell tryptase in the degradation of pericellular matrices.  相似文献   

11.
Tryptases, the predominant proteins of human mast cells, have been implicated as pathogenetic mediators of allergic and inflammatory conditions, most notably asthma. Until recently, the fascinating properties that distinguish tryptases among the serine proteinases, particularly their activity as a heparin-stabilized tetramer, resistance to most proteinaceous inhibitors, and preference for peptidergic over macromolecular substrates presented a riddle. This review solves this riddle with the help of the crystal structure of the human beta(2)-tryptase tetramer, but also indicates controversies between the unique quaternary architecture and some experimental data.  相似文献   

12.
Evaluation of human peripheral blood leukocytes for mast cell tryptase   总被引:11,自引:0,他引:11  
Murine monoclonal and goat polyclonal antibodies against tryptase, the dominant neutral protease and protein component in secretory granules of human mast cells, were used to assess the presence of tryptase in peripheral leukocytes. Carnoy's fluid-fixed cytocentrifuge preparations of enriched populations of lymphocytes, monocytes, eosinophils, and neutrophils showed no reactivity with anti-tryptase antibodies by a sensitive indirect immunoperoxidase procedure. Dispersed human lung mast cells showed strong granular cytoplasmic staining with both antibodies, whereas only approximately 50% of the peripheral blood basophils detectable with Wright's stain were detected with anti-tryptase antibodies, and these showed a staining pattern that was faint, granular, and cytoplasmic at high concentrations of antibody. At lower antibody concentrations mast cell staining was still intense, whereas basophils were not stained. Extracts of neutrophils and lymphocytes of up to 90% purity had undetectable amounts of tryptase by an ELISA sandwich immunoassay, as well as undetectable enzymatic activity with tosyl-L-gly-pro-lys-p-nitroanilide (a sensitive substrate for tryptase) in the presence of soybean trypsin inhibitor. Extracts of basophil-enriched (6 to 50% purity) preparations contained 0.046 +/- 0.013 pg of tryptase per basophil by the immunoassay along with 2 X 10(-9) +/- 0.8 X 10(-9) U of tryptase-like enzyme activity per basophil, compared with corresponding values of 12 pg, 480 X 10(-9) U of tryptase per human lung mast cell. Thus very small amounts of tryptase are present in human basophils (approximately 0.4% of that found in mast cells), but not in other peripheral leukocytes.  相似文献   

13.
The allosteric effect of salt on human mast cell tryptase   总被引:1,自引:0,他引:1  
The inhibitory effect of potassium chloride and ammonium sulphate on purified human skin tryptase and bovine trypsin was studied enzyme-kinetically, using Z-Gly-Pro-Arg-pNA, Z-Gly-Pro-Arg-AMC, benzoyl-L-arginine ethyl ester (BAEE) and tosyl-L-arginine methyl ester (TAME) as substrates. With increasing salt concentrations, the curve of reaction velocity vs. substrate concentration changed from hyperbolic to sigmoidal when anilide substrates (Z-Gly-Pro-Arg-pNA or -AMC) were used. Only the Km value increased, while the Vmax value remained unchanged. The trend was similar with BAEE or TAME as the substrates. However, the effect of salt on the hydrolysis of these ester substrates was not as strong as on the hydrolysis of anilide substrates, and sigmoidal kinetics were not observed even at the highest KCl concentration (0.7 M) used. Heparin, used as a stabilizer, had no influence on this phenomenon, but it did slightly decrease the apparent Km and Vmax values in low-salt conditions. By comparison, trypsin was not as strongly affected by salt as tryptase, and the inhibition type was mixed competitive and non-competitive. The present results indicate that the salt acts on tryptase as an allosteric effector, and this should be carefully considered when enzyme kinetic parameters and enzyme activity of skin tryptase are measured.  相似文献   

14.
Tryptase, the major neutral protease of human pulmonary mast cell secretory granules, rapidly inactivates human high m.w. kininogen (HMWK) in vitro. HMWK (5600 nM) lost 50% of its capacity to release kinin in response to kallikrein after a 5-min incubation with tryptase (31 nM), even though kinin activity was neither generated nor, when bradykinin was incubated with tryptase, destroyed by tryptase. The procoagulant activity of HMWK (51 nM) and the purified procoagulant chain (40 nM) that is derived from HMWK were each 72% inactivated after 7 min of incubation with tryptase (0.04 nM and 0.02 nM, respectively). Human urinary and pancreatic kallikrein did not inactivate this procoagulant activity under conditions in which kinin generation occurs. Complete cleavage of native single-chain HMWK by tryptase occurred in less than 10 min as analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. The major products formed during the initial 2 min were proteins of 100,000 and 95,000 apparent m.w., and by 10 to 30 min were fragments of 74,000 and 67,000 apparent m.w. Reduction of these cleavage products yielded two major fragments of 67,000 and 66,000 apparent m.w. that were both present by 0.17 min. The presence of lower m.w. products, thought to be primarily from the carboxy-terminal procoagulant region of HMWK, were also detected with and without reduction. The capacity of tryptase to inactivate HMWK is consistent with the ability of other mast cell-derived mediators, such as heparin proteoglycan and prostaglandin D2, to suppress blood coagulation and thrombosis, and may play an important role in the biology of mast cell-dependent events in vivo.  相似文献   

15.
Hallgren J  Pejler G 《The FEBS journal》2006,273(9):1871-1895
In 1960, a trypsin-like activity was found in mast cells [Glenner GG & Cohen LA (1960) Nature 185, 846-847] and this activity is now commonly referred to as 'tryptase'. Over the years, much knowledge about mast cell tryptase has been gathered, and a recent (18 January 2006) PubMed search for the keywords 'tryptase + mast cell*' retrieved 1661 articles. However, still very little is known about its true biological function. For example, the true physiological substrate(s) for mast cell tryptase has not been identified, and the potential role of tryptase in mast cell-related disease is not understood. Mast cell tryptase has several unique features, with perhaps the most remarkable being its organization into a tetrameric state with all of the active sites oriented towards a narrow central pore and its consequent complete resistance towards endogenous macromolecular protease inhibitors. Much effort has been invested to elucidate these properties of tryptase. In this review we summarize the current knowledge of mast cell tryptase, including novel insights into its possible biological functions and mechanisms of regulation.  相似文献   

16.
Potent, subnanomolar thrombin inhibitors 4, 5, and 6 are developed through side chain optimization of novel, benzo[b]thiophene-based small organic entities 2 and 3 and through SAR additivity studies of the new structural elements identified. X-ray crystallographic studies of 4b-thrombin complex revealed a hydrophobic and an electrostatic interaction of these new elements with thrombin at the S2 and S3 binding sites. In vitro and in vivo pharmacological studies showed that 4, 5, and 6 are potent anticoagulants in human plasma with demonstrated antithrombotic efficacy in a rat model of thrombosis.  相似文献   

17.
18.
Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase   总被引:10,自引:0,他引:10  
Tryptase, the dominant neutral protease of human pulmonary mast cell secretory granules, has the capacity in vitro to generate C3a anaphylatoxin from purified human C3. Only the alpha-chain of C3 is cleaved, and major fragments with apparent m.w. of 105,000, 39,500, 34,000, 29,000, and 9000 are detected by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis under reducing conditions. Fragments of 34,000 and 9000 m.w. are detected without reduction. A portion of the 9000 m.w. protein corresponds to C3a by virtue of its co-migration in SDS polyacrylamide gels with purified C3a and with trypsin-generated C3a, by its detection in a radioimmunoassay for C3a, and by its contractile activity on the guinea pig ileum bioassay. In the presence of heparin, another component of the mast cell secretory granule, the rate of appearance and the distribution of C3 cleavage fragments as assessed in SDS polyacrylamide gels are not appreciably changed with the exception that no C3a material can be detected in the SDS polyacrylamide gels or by radioimmunoassay and bioassay of the unresolved reaction mixture. Enhanced catabolism of authentic C3a by tryptase occurs in the presence of heparin and by analogy when C3a is generated from C3 by tryptase in the presence of heparin. Whereas tryptase secreted by activated human mast cells may generate C3a, a potentially important additional mediator of immediate hypersensitivity events, the concomitant release of heparin may serve to down-regulate C3a irrespective of its mechanism of generation.  相似文献   

19.
The functional role of mast cells in rheumatoid synovium was investigated by assessing the ability of mast cell tryptase to activate latent collagenase derived from rheumatoid synoviocytes. Tryptase, a mast cell neutral protease, was demonstrated in situ to reside in rheumatoid synovial mast cells, by an immunoperoxidase technique using a mouse mAb against tryptase, and in vitro to be released by dispersed synovial mast cells after both immunologic and nonimmunologic challenge. Each rheumatoid synovial mast cell contains an average of 6.2 pg of immunoreactive tryptase and the percent release values of this protease correlated with those of histamine (r = 0.58, p less than 0.01). The ability of purified tryptase to promote collagenolysis was demonstrated in a dose-dependent fashion using latent collagenase derived from rheumatoid synovium, synovial fluid, IL-1-stimulated cultured synoviocytes, and partially purified latent collagenase derived from conditioned media, with between 10 and 92% of the collagen substrate degraded. [3H] Collagen, treated with tryptase-activated latent collagenase, was subjected to electrophoresis on SDS polyacrylamide gels and autoradiography showed the collagen degradation pattern (A, B) characteristically produced by collagenase. Mast cell lysates also activated synovial latent collagenase yielding 24% digestion of collagen substrate. This activator in mast cell lysates could be inhibited by diisopropylflurophosphate or by immunoadsorption of tryptase. Thus, mast cells may activate metalloproteinases and play a role in the catabolism of collagen that occurs in rheumatoid synovium.  相似文献   

20.
Myeloperoxidase (MPO) is an important component of the neutrophil response to microbial infection. In this paper we report an additional activity of MPO, the potent and selective inhibition of human mast cell tryptase. MPO inhibits human mast cell tryptase in a time-dependent manner with an IC50 of 16 nM at 1 h. In contrast, MPO does not inhibit trypsin, thrombin, plasmin, factor Xa, elastase, or cathepsin G. It is the native protein conformation of MPO and not its enzyme activity that is responsible for tryptase inhibition. Heparin, at high concentrations, can prevent the inhibition of tryptase by MPO. We have shown by size-exclusion chromatography that MPO promotes the dissociation of active tryptase tetramer to inactive monomer. These data suggest that MPO inhibits tryptase by interfering with the heparin stabilization of tryptase tetramer. We have previously shown that lactoferrin (another neutrophil-associated protein) also inhibits tryptase activity by a similar mechanism. The finding that MPO is a potent inhibitor of tryptase lends further support to the hypothesis that neutrophil proteins, such as MPO and lactoferrin, may play a regulatory role as endogenous suppressers of tryptase enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号