首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.  相似文献   

4.
The virion incorporation of 7SL, the RNA component of the host signal recognition particle (SRP), has been shown for several simple retroviruses. Data here demonstrate that 7SL is also packaged by HIV-1, in sevenfold molar excess of genomic RNA. Viral determinants of HIV-1 genome and primer tRNA packaging were not required for 7SL incorporation, as virus-like particles with only minimal assembly components efficiently packaged 7SL. The majority of 7SL within cells resides in ribonucleoprotein complexes bound by SRP proteins, and most SRP protein exists in signal recognition particles. However, Western blot comparison of virion and cell samples revealed that there is at least 25-fold less SRP p54 protein per 7SL RNA in HIV-1 particles than in cells. Comparing 7SL:actin mRNA ratios in virions and cells revealed that 7SL RNA appears selectively enriched in virions.  相似文献   

5.
Identification of dynamic sequences in the central domain of 7SL RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
C Zwieb  E Ullu 《Nucleic acids research》1986,14(11):4639-4657
  相似文献   

6.
7.
8.
9.
Messenger RNA maturation in trypanosomes involves an RNA trans-splicing reaction in which a 39 nucleotide 5'-spliced leader (SL), derived from an independently transcribed 139 nucleotide SL RNA, is joined to pre-mRNAs. Trans-splicing intermediates are structurally consistent with a mechanism of SL addition which is similar to that of cis-splicing of nuclear pre-mRNAs; homologous components (e.g. the U small nuclear RNAs) exist in both cis- and trans-splicing systems, suggesting that these also participate in the two types of splicing reactions. In this study, ribonucleoprotein (RNP) complexes containing the trypanosome SL and U2 RNAs were purified and characterized. Although present at low levels in cellular extracts, the SL and U2 RNPs are the two most abundant of the several non-ribosomal small RNP complexes in these cells. The purification scheme utilizes ion-exchange chromatography, equilibrium density centrifugation, and gel filtration chromatography and reveals that the SL RNP shares biophysical properties with U RNPs of trypanosomes and other eukaryotes; its sedimentation coefficient in sucrose gradients is approximately 10 S, and it is resistant to dissociation during Cs2SO4 equilibrium density centrifugation. Complete separation of the SL and U2 RNPs was achieved by non-denaturing polyacrylamide gel electrophoresis. Proteins purifying with the SL and U2 RNPs were identified by 125I-labeling of tyrosine residues. Four SL RNP proteins with approximate molecular masses of 36, 32, 30, and 27 kDa and one U2 RNP protein of 31 kDa were identified, suggesting that different polypeptides are associated with these two RNAs. These particles are not immunoprecipitated by anti-Sm sera which recognizes U snRNP proteins of other eukaryotes including humans plants and yeast.  相似文献   

10.
11.
HIV-1 genomic RNA is packaged as a dimer into the virions. The initial metastable RNA dimer is believed to be formed by virtue of “kissing interactions” between two copies of the palindromic apical loops of stem-loop SL1 of the 5’-untranslated region (5’-UTR) of the genomic RNA. Viral nucleocapsid protein NCp7 promotes maturation of the RNA dimer into more stable form, which involves extended or linear form of SL1 dimer (reviewed in Paillart et al., 2004; Moore & Hu, 2009; Lu et al., 2011). In vitro experiments have shown that this conversion occurs at stoichiometric amounts of NCp7 without breaking interactions between the two copies of the SL1 apical loops (Mujeeb et al., 2007). We have proposed a hypothetical pathway and calculated models of the intermediate structures for the SL1 stem-loop dimer maturation that does not require simultaneous dissociation of all base pairs in SL1 stems; this pathway involves formation of an RNA analog of the Holliday junction intermediate between the two stems of the SL1 dimer and a following branch migration towards the palindromic duplex (Ulyanov et al., 2011). Here, we extend these models to the dimer of the 1–344 fragment of HIV-1 RNA, which includes all of the 5’-UTR and the gag start AUG codon region, and show that the branch-migration mechanism of the dimer maturation is also feasible for the full 5’-UTR RNA. All RNA models have been calculated with the miniCarlo program (Zhurkin et al., 1991).  相似文献   

12.
13.
Wang T  Tian C  Zhang W  Luo K  Sarkis PT  Yu L  Liu B  Yu Y  Yu XF 《Journal of virology》2007,81(23):13112-13124
Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions.  相似文献   

14.
Hagan N  Fabris D 《Biochemistry》2003,42(36):10736-10745
The formation of noncovalent complexes between the HIV-1 nucleocapsid protein p7 (NC) and RNA hairpins SL2-SL4 of the Psi-recognition element was investigated by direct infusion electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS). The high resolution afforded by this method provided the unambiguous characterization of the stoichiometry and composition of complexes formed by multiple equilibria in solution. For each hairpin, the formation of a 1:1 complex was found to be the primary binding mode in solutions of intermediate salt content (150 mM ammonium acetate). Binding of multiple units of NC was observed with lower affinity and a maximum stoichiometry matching the limit calculated from the number of nucleotides in the construct and the size of the footprint of NC onto single-stranded nucleic acids, thus implying the defolding of the hairpin three-dimensional (3D) structure. Dissociation constants of 62 +/- 22 nM, 178 +/- 64 nM, and 1.3 +/- 0.5 microM were determined for SL2, SL3-2, and SL4, respectively, which are similar to values obtained by spectroscopic and calorimetric methods with the additional confidence offered by a direct, rather than inferred, knowledge of the binding stoichiometry. Competitive binding experiments carried out in solutions of intermediate ionic strength, which has the effect of weakening the electrostatic interactions in solution, provided a direct way of evaluating the stabilizing contributions of H-bonding and hydrophobic interactions that are more sensitive to the sequence and structural context of the different hairpins. The relative scale of binding affinity obtained in this environment reflects the combination of contributions provided by the different structures of both the tetraloop and the double-stranded stem. The importance of the stem 3D structure in modulating the binding activity was tested by a competitive binding experiment that included the SL3-2 RNA construct, a DNA analogue of SL3 (SL3(DNA)), and a DNA analogue in which all four loop bases were replaced with abasic nucleotides (SL3(abasic)). NC was found to bind the A-type double-stranded stem of SL3-2 RNA at least 30 times more tightly than the B-type helical structure of SL3(DNA). Eliminating the stabilization provided by the interactions with the tetraloop bases made the binding of SL3(abasic) approximately 50 times weaker than that of SL3(DNA).  相似文献   

15.
Rubella virus (RV) infections in adult women can be associated with acute and chronic arthritic symptoms. In many autoimmune individuals, antibodies are found targeting endogenous proteins, called autoantigens, contained in ribonucleoprotein complexes (RNPs). In order to understand the molecular mechanisms involved in the RV-associated pathology, we investigated the nature of cellular factors binding RV RNA and whether such RNPs were recognized by antibodies in infected individuals. Previously, we noted that cellular proteins associated with the RV 5'(+) stem-loop (SL) RNA are recognized by serum with Ro reactivity. To better understand the nature of the autoantigens binding RV cis-acting elements, serum samples from individuals with various autoimmune diseases were tested for their ability to immunoprecipitate RNPs containing labeled RV RNAs. A subset of serum samples recognizing autoantigen La, or Ro and La, immunoprecipitated both the RV 5'(+)SL and 3'(+)SL RNA-protein complexes. Autoantigens binding the RV 5'(+)SL and 3'(+)SL RNAs differed in molecular mass, specificities for respective RNA binding substrates, and sensitivity to alkaline phosphatase treatment. The La autoantigen was found to interact with the RV 5'(+)SL RNA as determined by immunological techniques and binding reactions with mixtures containing recombinant La protein. To test whether there is a correlation between La binding to an RV RNA element and the appearance of an anti-La response, we measured anti-La titers in RV-infected individuals. Significant anti-La activity was detected in approximately one-third of RV-infected individuals 2 years postinfection.  相似文献   

16.
N Campos  J Palau    C Zwieb 《Nucleic acids research》1989,17(4):1573-1588
An 11 S ribonucleoprotein particle was isolated from maize endosperm and shown to be functionally and structurally equivalent to the mammalian signal recognition particle. However, unlike animal cells which apparently contain a single 7 SL RNA species, maize endosperm contains a heterogeneous population of 7 SL RNA. To investigate this diversity, we have cloned and sequenced a number of the maize endosperm 7 SL RNAs isolated from functionally active SRP preparations. Some maize 7 SL RNAs are strikingly similar, differing by single base changes or short deletions; surprisingly, others share less than 70 percent sequence homology. Despite differences in primary sequence, nearly identical secondary structures can be suggested for all maize 7 SL RNAs, consistent with a proposed functional role in protein translocation for each of these RNAs. The amount of new available sequence data enabled us to define two conserved regions of presumed functional importance: A conserved sequence -G-N-A-R- in the center of a variable region which forms a well defined stem-loop and possibly is involved in an interaction with the 19 kDa protein of the SRP. Secondly, three short nucleotide stretches located in the central domain of 7 SL RNA may form part of a dynamic RNA-switch structure.  相似文献   

17.
18.
Retroviruses incorporate specific host cell RNAs into virions. In particular, the host noncoding 7SL RNA is highly abundant in all examined retroviruses compared with its cellular levels or relative to common mRNAs such as actin. Using live cell imaging techniques, we have determined that the 7SL RNA does not arrive with the HIV‐1 RNA genome. Instead, it is recruited contemporaneously with assembly of the protein HIV‐1 Gag at the plasma membrane. Further, we demonstrate that complexes of 7SL RNA and Gag can be immunoprecipitated from both cytosolic and plasma membrane fractions. This indicates that 7SL RNAs likely interact with Gag prior to high‐order Gag multimerization at the plasma membrane. Thus, the interactions between Gag and the host RNA 7SL occur independent of the interactions between Gag and the host endosomal sorting complex required for transport (ESCRT) proteins, which are recruited temporarily at late stages of assembly. The interactions of 7SL and Gag are also independent of interactions of Gag and the HIV‐1 genome which are seen on the plasma membrane prior to assembly of Gag.   相似文献   

19.
Trypanosomatids are ancient eukaryotic parasites affecting humans and livestock. Here we report that the trypanosomatid signal recognition particle (SRP), unlike all other known SRPs in nature, contains, in addition to the 7SL RNA homologue, a short RNA molecule, termed sRNA-85. Using conventional chromatography, we discovered a small RNA molecule of 85 nucleotides co-migrating with the Leptomonas collosoma 7SL RNA. This RNA molecule was isolated, sequenced, and used to clone the corresponding gene. sRNA-85 was identified as a tRNA-like molecule that deviates from the canonical tRNA structure. The co-existence of these RNAs in a single complex was confirmed by affinity selection using an antisense oligonucleotide to sRNA-85. The two RNA molecules exist in a particle of approximately 14 S that binds transiently to ribosomes. Mutations were introduced in sRNA-85 that disrupted its putative potential to interact with 7SL RNA by base pairing; such mutants were unable to bind to 7SL RNA and to ribosomes and were aberrantly distributed within the cell. We postulate that sRNA-85 may functionally replace the truncated Alu domain of 7SL RNA. The discovery of sRNA-85 raises the intriguing possibility that sRNA-85 functional homologues may exist in other lower eukaryotes and eubacteria that lack the Alu domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号