首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton-decoupled natural abundance 13C NMR spectra of carbon monoxide hemoglobins were recorded at 15.18 MHz by the Fourier transform method, under conditions of spectrometer sensitivity sufficient for detection of individual carbon resonances. The aromatic region of each spectrum contains broad bands of methine carbon resonances, and some relatively narrow peaks arising from nonprotonated carbons. Resonances of heme carbons were detected in spectra of carbon monoxide hemoglobins, but not in spectra of ferrihemoglobin (as a result of paramagnetic effects). Spectra of carbon monoxide hemoglobins from various species yielded only a few well resolved individual carbon resonances, most notably those of Cgamma of tryptophan residues. A comparison of the spectra of human adult, human fetal, chicken AII, and bovine fetal hemoglobins yielded specific assignments for all resonances of Cgamma of tryptophan residues. In the cases of human fetal, chicken AII, and bovine fetal hemoglobins, each tryptophan yielded a completely resolved individual carbon resonance. The chemical shift difference between the resonances of Cgamma of Trp-130beta and Cgamma of Trp-37beta is about 6 ppm. The chemical shift difference between Trp A12[14]alpha and Trp A12[15]beta is 1 ppm or less. A comparison of the chemical shifts of analogous tryptophan residues of the four carbon monoxide hemoglobins suggests very similar conformations in solution.  相似文献   

2.
The amino-acid sequences of the alpha- and beta-chains of gayal hemoglobin have been determined and compared with those of bovine and yak hemoglobins. The gayal alpha-chain differs from the alpha-chains of bovine by 3 amino-acid residues and from yak I alpha- and II alpha-hemoglobins by 4 and 2 residues, respectively. The gayal beta-chain differs from bovine beta A- and beta B-chains by 3 and 4 residues, respectively and from yak beta-chains by 2 residues.  相似文献   

3.
Asymmetrical hybrid hemoglobins formed in mixtures of Hb A and Hb S, Hb F and Hb S, Hb S and Hb York(beta 146 His----Pro), and Hb A and Hb York were separated by high performance liquid chromatography on cation and anion exchange columns under anaerobic conditions. The ratio of the hybrid hemoglobin to the total mixture was consistently lower than that theoretically expected and decreased with longer elution times. The hybrid tetramer appears to be unstable even under anaerobic conditions and dissociates into alpha beta dimers. The time course of dissociation of the hybrid hemoglobins was determined by varying the separation programs and thus separating the hybrid hemoglobin at different elution times. The rate of the dissociation of the hybrid hemoglobins studied follows first order kinetics. The lines representing the time course of dissociation of hybrid hemoglobins were extrapolated to time 0 to determine the fraction of the hybrid hemoglobin in the mixture prior to separation. The values obtained for equimolar mixtures of Hb A and Hb S and Hb York and Hb S or Hb A were in agreement with the expected theoretical value (50%). In contrast, the value obtained for hybrid hemoglobin FS was slightly less (about 40%). AY and SY hybrid hemoglobins dissociated into dimers at a considerably faster rate than did AS and FS hybrid hemoglobins, possibly because of the mutation at the beta 146-position in hybrid hemoglobins containing alpha beta Y dimers. This mutation hinders the formation of salt bridges that normally stabilize the "T" quaternary conformation. Since such hybrid hemoglobins have a partial "R" conformation even when deoxygenated, their rate of dissociation to dimers is expected to increase.  相似文献   

4.
The crystal structures of three mutant hemoglobins reconstituted from recombinant beta chains and authentic human alpha chains have been determined in the deoxy state at 1.8-A resolution. The primary structures of the mutant hemoglobins differ at the beta-chain amino terminus. One mutant, beta Met, is characterized by the addition of a methionine at the amino terminus. The other two hemoglobins are characterized by substitution of Val 1 beta with either a methionine, beta V1M, or an alanine, beta V1A. All the mutation-induced structural perturbations are small intrasubunit changes that are localized to the immediate vicinity of the beta-chain amino terminus. In the beta Met and beta V1A mutants, the mobility of the beta-chain amino terminus increases and the electron density of an associated inorganic anion is decreased. In contrast, the beta-chain amino terminus of the beta V1M mutant becomes less mobile, and the inorganic anion binds with increased affinity. These structural differences can be correlated with functional data for the mutant hemoglobins [Doyle, M. L., Lew, G., DeYoung, A., Kwiatkowski, L., Noble, R. W., & Ackers, G. K. (1992) Biochemistry preceding paper is this issue] as well as with the properties of ruminant hemoglobins and a mechanism [Perutz, M., & Imai, K. (1980) J. Mol. Biol. 136, 183-191] that relates the intrasubunit interactions of the beta-chain amino terminus to changes in oxygen affinity. Since the structures of the mutant deoxyhemoglobins show only subtle differences from the structure of deoxyhemoglobin A, it is concluded that any of the three hemoglobins could probably function as a surrogate for hemoglobin A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Surface hydrophobicity, stability, solubility, and kinetics of polymerization were studied using hemoglobins with four different amino acids at the beta 6 position: Hb A (Glu beta 6), Hb C (Lys beta 6), Hb Machida (Gln beta 6), and Hb S (Val beta 6). The surface hydrophobicity increased in the order of Hb C, Hb A, Hb Machida, and Hb S, coinciding with the hydrophobicity of the amino acid at the beta 6 position. Solubility of the oxy-form of these hemoglobins decreased in relation to increases in their surface hydrophobicity, suggesting that the solubility is controlled by the strength of hydrophobicity of the amino acid at the beta 6 position. The solubility of the oxy-form of these hemoglobins is always higher than that of the deoxy-form. There is a similar linear relationship between the solubility and surface hydrophobicity among deoxyhemoglobins A, C, and Machida. However, the solubility of deoxy-Hb S deviated significantly from the expected value, indicating that the extremely low solubility of deoxy-Hb S is not directly related to the hydrophobicity of the beta 6 valine. Kinetic studies on the polymerization of deoxy-Hb Machida revealed a distinct delay time prior to polymerization. This confirms our previous hypothesis that beta 6 valine is not responsible for the delay time prior to gelation. The kinetics of the polymerization of 1:1 mixtures of sickle and non-sickle hemoglobins were similar to those of pure Hb S, suggesting that only one of the two beta 6 valines is involved in an intermolecular contact. In mixtures of equal amounts of Hb S and Hb A, Hb C, or Hb Machida, half of the asymmetrical AS, SC, and S-Machida hybrid hemoglobins behaved like Hb S during nucleation, while the other half behaved like the non-sickle hemoglobin.  相似文献   

6.
The complete primary structure of the two hemoglobin components of the Great Indian Rhinoceros (Rhinoceros unicornis) is presented. The ratio for the two components B(alpha 2 beta I2): A(alpha 2 beta II2) is 6:4. Polypeptide subunits were separated by chromatography on CM-cellulose in a buffer containing 8M urea. The sequence was studied by degradation of the tryptic and hydrolytic cleavage products in a liquid phase sequencer. At position beta NA2 component B has Asp, whereas component A has Glu, an ATP-binding site in fish and reptilian hemoglobins. The other phosphate binding sites i.e. beta NA1 Val, beta EF6 Lys and beta H21 His are identical with 2,3-bisphosphoglycerate-(DPG)binding sites in mammalian hemoglobins, whereby rhinoceros hemoglobin resembles both ATP-sensitive poikilotherm hemoglobin and DPG-sensitive mammalian hemoglobin. The two components (beta I/beta II) additionally differ by exchange of Glu----Gly at position beta A3 and Gln----Lys at position beta GH3. The significance of these changes is discussed. Oxygenation properties of the two hemoglobins components and their dependence on ATP and DPG are given. The structure and function of Rhinoceros hemoglobin may give an insight into the evolution of the organic phosphate binding in vertebrate hemoglobins.  相似文献   

7.
The adult greater Kudu antelope has two hemoglobin components, Hb A and Hb B, with one alpha and two beta chains. The complete amino-acid sequences of these three chains are presented. The two beta chains differ only in one residue at position 16 (Gly----Ser) and may be the product of two allelic genes. The primary structure of the chains was determined by sequencing the tryptic peptides after their isolation from the tryptic digest of the chains by high performance liquid chromatography. The alignment of these peptides was deduced from homology with the chains of bovine hemoglobin. Between the Kudu hemoglobins and those of cattle a high degree of homology was found.  相似文献   

8.
The primary structures of alpha- and beta-chains of hemoglobin from reindeer (Rangifer tarandus tarandus) were determined. Comparison of the reindeer hemoglobin sequence with those of human and bovine hemoglobins showed 50 and 29 substitutions per alpha beta dimer, respectively. The influence of replacements on the modulation of hemoglobin oxygen affinity by heterothopic ligands and temperature, as well as their importance on the structure-function relationships in hemoglobin are discussed.  相似文献   

9.
The rates and equilibria of heme exchange between methemoglobin and serum albumin were measured using a simple new spectrophotometric method. It is based on the large difference between the spectrum of methemoglobin and that of methemealbumin at pH 8-9. The rate of heme exchange was found to be independent of the albumin concentration and inversely proportional to the hemoglobin (Hb) concentration. Taken together with the finding that the rate was 10 times greater for Hb Rothschild, which is completely dissociated into alpha beta dimers and 10 times smaller for two cross-linked hemoglobins, the subunits of which cannot dissociate, this showed that the rate of dissociation of heme from alpha beta dimers is very much greater than from tetramers. Conditions were found for the attainment of an equilibrium distribution of hemes between beta globin and albumin. The equilibrium distribution ratio, R = methemealbumin/albumin/methemoglobin/apohemoglobin, for hemoglobin A was 3.4 with human and 0.005 with bovine serum albumin. Both the rates of exchange and the R values of HbS and HbF were the same as that for HbA. The equilibrium distribution ratio for Hb Rothschild was 7 times greater than that for HbA whereas that of one but not the other of the cross-linked hemoglobins was 10 times smaller. The structural bases for these differences are analyzed.  相似文献   

10.
Ni(II)-Fe(II) hybrid hemoglobins, in which hemes in either the alpha or beta subunit are substituted with Ni(II) protoporphyrin IX, have been prepared and characterized. Since Ni(II) protoporphyrin IX binds neither oxygen nor carbon monoxide, the oxygen equilibrium properties of the Fe subunit in these hybrid hemoglobins were specifically determined. K1 values, namely the equilibrium constants for the first oxygen molecule to bind to hemoglobin, agreed well for these hybrid hemoglobins with the K1 value of native hemoglobin A in various conditions. Therefore, Ni(II) protoporphyrin IX in these hybrid hemoglobins behaves like a permanently deoxygenated heme. Both Ne-Fe hybrid hemoglobins bound oxygen non-co-operatively at low pH values. When the pH was raised, alpha 2 (Fe) beta 2 (Ni) showed co-operativity, but the complementary hybrid, alpha 2 (Ni) beta 2 (Fe), did not show co-operativity even at pH 8.5. The light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins indicated that the coordination states of Ni(II) protoporphyrin IX in the alpha subunits responded to the structure of the hybrid, whereas those in the beta subunits were hardly changed. In a deoxy-like structure (the structure that looks like that observed in deoxyhemoglobin), four-co-ordinated Ni(II) protoporphyrin IX was dominant in the alpha (Ni) subunits, while under the conditions that stabilized an oxy-like structure (the structure that looks like that observed in oxyhemoglobin), five-co-ordinated Ni(II) protoporphyrin IX increased. The small change observed in the absorption spectrum of the beta (Ni) subunits is not related to the change of the co-ordination number of Ni(II) protoporphyrin IX. Non-co-operative binding of oxygen to the beta subunits in alpha 2 (Ni) beta 2 (Fe) accompanied the change of absorption spectrum in the alpha (Ni) subunits. We propose a possible interpretation of this unique feature.  相似文献   

11.
The temperature dependence of the rates of heme release from the beta subunits of methemoglobin A and 5 beta mutant methemoglobins has been determined. The rates were largest for two hemoglobins with mutations distal to heme, previously known to be unstable. The other 3 mutants also released heme faster than A. These hemoglobins, with single point mutations at the alpha 1/beta 2 interface, were previously thought to be stable. The low reported yields of the 5 mutant proteins covaries with the relative rates of heme release from the met species.  相似文献   

12.
1. Dual hemoglobins were isolated from both Lemmus and Discrostonyx, two genera of microtine rodents of the tribe Lemmini. 2. The dual hemoglobins result from dual alpha-chains and the charge difference Asp----Ala at position alpha 5. 3. The beta-chains of Dicrostonyx and Lemmus hemoglobins differ in charge by Ala----Asp at beta 125. 4. Cladograms are presented for the hemoglobin chains of microtine rodents.  相似文献   

13.
Binding of trimethylphosphine to myoglobins and hemoglobins from a variety of sources has been examined by 1H-nuclear magnetic resonance. The hemoglobins exhibit two resonances at high field (approx. -3.5 ppm) which have been assigned to PMe3 bound to alpha or to beta subunits. Perturbations in the beta heme pocket induced by a thiol reagent have been detected both in 1H and 31P spectra.  相似文献   

14.
An allosteric modulator of oxygen release in human erythrocytes is 2,3-diphosphoglycerate, but bovine erythrocytes apparently utilize chloride for this purpose since they contain little, if any, 2,3-diphosphoglycerate. In order to identify the sites to which these anions bind, the site-specific acetylating agent, methyl acetyl phosphate, has been employed to compete with these allosteric modulators and to mimic their effects on hemoglobin function. With human hemoglobin A, methyl acetyl phosphate competes with 2,3-diphosphoglycerate and acetylates only Val-1(beta), Lys-82(beta), and Lys-144(beta) within or near the cleft that binds this organic phosphate (Ueno, H., Pospischil, M. A., Manning, J. M., and Kluger, R. (1986) Arch Biochem. Biophys. 244, 795). With bovine hemoglobin, the acetylation is competitive with chloride ion. The sites of acetylation in oxy bovine hemoglobin are Met-1(beta) and Lys-81(beta) and for deoxy bovine hemoglobin, they are Val-1(alpha) and Lys-81(beta). Thus, these sites are expected to be involved in the binding of chloride to bovine hemoglobin. Treatment of either human or bovine hemoglobins with methyl acetyl phosphate under anaerobic conditions leads to a lowering of their oxygen affinity and hence the covalent modifier has the same effect on hemoglobin function as the non-covalent regulators, 2,3-diphosphoglycerate and chloride. The Hill's coefficient of hemoglobin is unaffected by treatment with methyl acetyl phosphate. Under aerobic conditions, specifically acetylated bovine hemoglobin also has a lowered oxygen affinity, and human hemoglobin A shows a slight change in its oxygen affinity. In general, bovine hemoglobin is more responsive than human hemoglobin to both chloride and methyl acetyl phosphate; the latter agent results in a permanent covalent labeling of the protein. Therefore, the results support the idea that methyl acetyl phosphate may be a useful probe for deciphering the sites of binding of anions to proteins.  相似文献   

15.
Chemical modifications, NES-Cys(beta 93), des-Arg(alpha 141), and both modifications on the same molecule, were made to Ni-Fe hybrid hemoglobins, and their effect on individual subunits was investigated by measuring oxygen equilibrium curves, the Fe(II)-N epsilon (His F8) stretching Raman lines, and light-absorption spectra. The oxygen equilibrium properties indicated that modified Ni-Fe hybrid hemoglobins remain good models for the corresponding deoxy ferrous hemoglobins, although K1, the dissociation equilibrium constant for the first oxygen to bind to hemoglobin, was decreased by the chemical modifications. Resonance Raman spectra of deoxy alpha 2 (Fe) beta 2 (Ni) and light-absorption spectra of deoxy alpha 2 (Ni) beta 2 (Fe), revealed that the state of alpha hemes in both hybrid hemoglobins underwent a transition from a deoxy-like state to an oxy-like state caused by these chemical modifications when K1 was about 3 mm Hg (1 mm Hg approximately 133.3 Pa). On the other hand, the state of beta hemes in hybrid hemoglobins was little affected, when K1 was larger than 1 mm Hg. Modified alpha 2 (Fe) beta 2 (Ni) gave a Hill coefficient greater than unity with a maximum of 1.4 when K1 was about 4 mm Hg. The two-state model predicts that the K1 value at the maximum Hill coefficient should be much larger than this value. For oxygen binding to unmodified alpha 2 (Ni) beta 2 (Fe), oxygen equilibrium data suggested no structural change, while the spectral data showed a structural change around Ni(II) protoporphyrin IX in the alpha subunits. A similar situation was encountered with modified alpha 2 (Ni) beta 2 (Fe), although K1 was decreased as a result of the structural changes induced by the modifications.  相似文献   

16.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

17.
Some fish are warm-bodied, e.g. the bluefin tuna (Thunnus thynnus), which has a muscle temperature 12-17 degrees C higher than its environment. This endothermy is achieved by aerobic metabolism and conserved by means of a heat-exchanger system. The hemoglobins of bluefin tuna are adapted to these conditions by their endothermic oxygenation, thus contributing to the preservation of the body energy. This is a new and so far unique property of tuna hemoglobin. The primary structure of the alpha and beta chains of bluefin tuna hemoglobins is presented. The sequence was determined after enzymatic and chemical cleavages of the chains and sequencing of the peptides in gas- and liquid-phase sequencers. The alpha chains consists of 143 residues and are N-terminally acetylated. The beta chains have 146 amino acids and show two ambiguities at positions 140 and 142. The alpha chains differ from the human alpha chains in 65 amino-acid residues, the beta chains in 76. The hemoglobins of bluefin tuna, carp and man are compared and their different physiological properties are discussed in relation to the sequence data. From the primary structure of tuna hemoglobins, it is possible to propose a molecular basis for their peculiar endothermic transition from the T to the R structure.  相似文献   

18.
Different molecular forms of hemoglobins of locally available murines, represented by Rattus rattus rufescens, have been investigated and the probable genetic mechanisms leading to the observed heterogenicity in the hemoglobin phenotypes are discussed. Each fraction was isolated in chromatographically pure form, identified and characterised structurally to establish their alpha- and non-alpha-chain constitution. Six molecular forms of component hemoglobins were identified from a wild population of R. rattus rufescens. The present study suggests five different globin chains in the hemoglobin of house rats (Rattus rattus rufescens). There are apparently two alpha-chains, namely alpha I and alpha II, and three different beta-chains, viz. beta I, beta II and beta III. The invariable presence, though at varying concentrations, of all these five globin chains implicates a gene duplication at the alpha-chain loci and a gene triplication at the beta-chain loci, the latter being a rather rare and unique genetic event.  相似文献   

19.
Nine hemoglobins were purified from blood of Salmo clarki by ion-exchange chromatography and preparative isoelectric focusing. The subunit structures of eight of the purified hemoglobins were studied by electrophoresis of globins in the presence of urea. Six are alpha 2 beta 2 tetramers while two appear to be heterotetramers of the type alpha alpha' beta 2 and alpha alpha' beta beta'. The effects of pH, nucleotides, and temperature on the oxygen equilibria of the purified hemoglobins were studied. Five hemoglobins with isoelectric points from 9.1 to 7.1 and one minor hemoglobin with an isoelectric point of 5.9 appear to have essentially identical oxygen binding properties. All have similar oxygen equilibria which are independent of pH and temperature and not affected by saturating amounts of ATP. Another minor hemoglobin with an isoelectric point below 5.9 has similar oxygen equilibria except for a possible pH dependence. Two hemoglobins, with isoelectric points of 6.5 and 6.4, have oxygen binding properties which are strongly pH and temperature dependent. Addition of ATP or GTP causes a large decrease in the oxygen affinity without affecting the cooperativity of oxygen binding. The effect of GTP is slightly greater than that of ATP. No significant differences were observed in the oxygen equilibria of these two hemoglobins. The red blood cells of S. clarki were found to contain large amounts of both ATP and GTP, with an ATP:GTP ratio of 3:1. Both nucleotides may be important modulators of hemoglobin oxygen affinity in S. clarki, in contrast to the situation in S. gairdneri, in which red blood cell GTP concentrations are considerably lower. The presence of six or possibly seven hemoglobins with identical oxygen binding properties in S. clarki suggests that, to a large extent, the physiological role of multiple hemoglobins in this species involves phenomena not directly related to the oxygen binding properties of the hemoglobins.  相似文献   

20.
The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin approximately 50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian alpha and beta chains. The larger IleE11 side chain sterically hinders bound O(2) and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in alpha subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near beta CD3 in the perch Hb (approximately 8 A) compared with trout IV Hb (approximately 6 A) which in turn is significantly higher than that in bovine Hb (approximately 4 A) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号