首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning of the complete human cytomegalovirus genome in cosmids   总被引:40,自引:0,他引:40  
Purified virion DNA (155 X 10(6) Mr) of human cytomegalovirus (CMV) strain Ad169 was partially cleaved with restriction endonucleases HindIII and EcoRI and cloned in the respective cleavage sites of cosmid pHC79. A complete gene library was established in a set of clones containing the viral DNA in long overlapping segments. Restriction maps for HindIII (29 fragments) and EcoRI (36 fragments) were constructed from the linkage of cosmid-cloned fragments, from double digestions of cloned DNA, and from blot hybridization of labeled cloned viral DNA with restriction fragments of virion DNA and singly or doubly cleaved cosmid clones.  相似文献   

2.
NIH 3T3 cells were transfected with restriction endonuclease and cloned human cytomegalovirus DNA fragments to identify the transforming region(s). Cleavage of human cytomegalovirus strain AD169 DNA with XbaI and HindIII left a transforming region intact whereas EcoRI inactivated this function. Transfection of cells with cosmids containing human cytomegalovirus DNA spanning the entire genome resulted in transformation by one cosmid, pCM1058, with the AD169 HindIII DNA fragments E, R, T, and a'. Cells were selected for their growth in 1.2% methylcellulose. The clones isolated had a significant replating efficiency and were oncogenic in BALB/c nu/nu mice. Transfection of cosmids and plasmids containing subsets of the viral sequences in pCM1058 identified a common region possessed by all of the transforming recombinant molecules. This region was in the HindIII E fragment with the left boundary defined by the EcoRI d-R junction and the right boundary defined by the HindIII E-T junction. Further mapping and transfection experiments determined that the transforming region was contained without a 2.9-kilobase fragment between map units 0.123 and 0.14 on the prototype molecule of the AD169 strain.  相似文献   

3.
A complete collection of fragments of Epstein-Barr virus DNA, obtained by cleavage with restriction endonuclease Eco RI, has been cloned. Fourteen different internal fragments of the virus genome, derived from linear virion DNA of the B95-8 strain, and sequences corresponding to the terminal regions of virion DNA, derived from intracellular circular EBV DNA isolated from 895-8 cells, were cloned. Sizes of fragments were determined by agarose gel electrophoresis and their sum leads to an estimated molecular weight of 110 x 10(6) for virion DNA. Large Eco RI DNA fragments of special interest were also cloned in cosmids using another source of EBV DNA, that is, to circular viral DNA derived from Raji cells. In order to provide a set of overlapping sequences, all the 29 internal Bam HI fragments of B95-8 virion DNA were cloned in pBR322. The map location within the viral genome of each cloned DNA fragment was identified by hybridizing to blots of virion DNA cleaved with several different restriction endonucleases.  相似文献   

4.
P J Greenaway  J D Oram  R G Downing  K Patel 《Gene》1982,18(3):355-360
The cloned HindIII fragments of human cytomegalovirus (HCMV) strain AD169 DNA were mapped with respect to the BamHI, EcoRI and PstI restriction endonuclease cleavage sites. Composite restriction endonuclease cleavage maps for the entire virus genome were constructed using the previously established linkages between the HindIII fragments.  相似文献   

5.
We have used cloned EcoRI fragments of the human CMV (HCMV) genome, strain AD169, to prepare restriction endonuclease maps of the DNA. Individual 32P-labeled cloned fragments were hybridized to Southern blots of HCMV DNA cleaved to completion with the restriction endonucleases BglII and HindIII and cleaved partially with EcoRI. By determining which EcoRI fragments hybridized to the same band on a Southern blot, we were able to establish linkage groups. This information coupled with the data derived from digestion of the cloned fragments with the enzymes BglII and HindIII (Tamashiro et al., J. Virol. 42:547-557, 1982) provided the basis for the construction of detailed maps for the enzymes EcoRI, BglII, and HindIII. We also identified the EcoRI fragments derived from the termini of this genome and mapped them with respect to the BglII and HindIII terminal fragments. From our mapping data, we conclude that the genome of HCMV is approximately 240 kilobases in length and is divided into long (198 kilobases) and short (42 kilobases) regions. Both regions consist of a unique sequence bounded by inverted repeats (11 to 12 kilobases for the long region and 2 to 3 kilobases for the short region). Furthermore, the long and short regions can invert relative to each other.  相似文献   

6.
Purified virion DNA of about 200 kilobase pairs of tupaia herpesvirus strain 2 was cleaved with EcoRI or HindIII restriction endonuclease. Restriction fragments representing the complete viral genome including both termini were inserted into the EcoRI, HindIII, and EcoRI-HindIII sites of the bacterial plasmid pAT153. Restriction maps for the restriction endonucleases EcoRI and HindIII were constructed with data derived from Southern blot hybridizations of individual viral DNA fragments or cloned DNA fragments which were hybridized to either viral genome fragments or recombinant plasmids. The analysis revealed that the tupaia herpesvirus genome consists of a long unique sequence of 200 kilobase pairs and that inverted repeat DNA sequences of greater than 40 base pairs do not occur, in agreement with previous electron microscopic data. No DNA sequence homology was detectable between the tupaia herpesvirus DNA and the genome of murine cytomegalovirus, which was reported to have a similar structure. In addition, seven individual isolates of tupaia herpesvirus were characterized. The isolates can be grouped into five strains by their DNA cleavage patterns.  相似文献   

7.
We used restriction endonucleases to prepare physical maps of the mouse mammary tumor virus (MMTV)-specific DNA endogenous to the BALB/c mouse strain. The mapping was facilitated by the DNA transfer procedure, using complementary DNAs specific for the whole and for the 3' terminus of MMTV RNA to detect fragments containing viral sequences. The strategies used for the arrangement of fragments into physical maps included sequential digestions with two or three enzymes; preparative isolation of EcoRI fragments containing viral sequences; and comparisons of virus-specific fragments derived from the DNA of several mouse strains. Most of the MMTV-related DNA in the BALB/c genome is organized into two units (II and III) which strongly resemble proviruses acquired upon horizontal infection with milk-borne strains of MMTV and other retroviruses. These units contain approximately 6.0 x 10(6) Mr of apparently uninterrupted viral sequences, they bear redundant sequences totaling at least 700 to 800 base pairs at their termini, and the terminal redundancies include sequences derived from the 3' end of MMTV RNA. Units II and III are closely related in that they share 12 of 14 recognition sites for endonucleases, but cellular sequences flanking units II and III are dissimilar by this criterion. The remainder of the MMTV-related DNA endogenous to BALB/c mice is found in a single subgenomic unit (unit I) with a complexity of ca. 2 x 10(6) Mr; the structure of this unit has not been further defined. These results support the hypotheses that endogenous proviruses have been acquired by infection of germinal tissues with MMTV. The physical maps are also useful for identifying the MMTV genomes endogenous to BALB/c mice in studies of the natural history of mammary tumorigenesis.  相似文献   

8.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

9.
Molecular cloning and physical mapping of murine cytomegalovirus DNA.   总被引:32,自引:27,他引:5       下载免费PDF全文
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.  相似文献   

10.
We have characterized the heterogeneity occurring at the junction of the long (L) and short (S) segments and at the termini of the strain AD169 human cytomegalovirus (HCMV) genome by restriction endonuclease mapping and nucleotide sequence analyses. The HCMV a sequence was identified by its position at both termini and inverted orientation at the L-S junction. Heterogeneity at both termini and the L-S junction was generated by the presence of fused and tandem a sequences. Some S termini lacked an a sequence. In addition, near the L terminus and at the L-S junction there were a variable number of 217-base-pair (bp) XhoI fragments arranged in tandem. The 217-bp fragments consisted of a portion of the a and adjacent b sequences (in the L-segment repeat) bounded by the same direct repeats (DR1) found at the boundaries of the a sequence. A model for the generation of these heterogeneous fragments is presented. We also determined the sequence of seven cloned terminal fragments, five from the L terminus and two from the S terminus. All L termini contained identical terminal sequences ending with base 32 of a 33-bp DR1. The S termini differed from each other and from the L-segment termini. One S terminus lacked an a sequence and terminated within S-segment repeat (c) sequences. The second S terminus contained an a sequence and terminated with bases 20 to 33 of a 33-bp DR1. A comparison of the cloned L and S terminal sequences with cloned L-S junction sequences suggested that the termini contained 3' single base extensions which were removed during the cloning. We also show that the herpesvirus conserved sequence is in a similar position relative to the termini of HCMV and several other herpesviruses, thus adding further support for the role of the sequence in the maturation of viral DNA.  相似文献   

11.
The arrangement of EcoRI, Hsu I, and Sal I restriction enzyme sites in the DNA of the B95-8 and W91 isolates of Epstein-Barr virus (EBV) has been determined from the size of the single-enzyme-cleaved fragments and from blot hybridizations that identify which fragments cut from the DNA with one enzyme contain nucleotide sequences in common with fragments cut from the DNA with a second enzyme. The DNA of the B95-8 isolate was the prototype for this study. The data indicate that (i) approximately 95 X 10(6) to 100 X 10(6) daltons of EBV (B95-8) DNA is in a consistent and unique sequence arrangement. (ii) Both termini are variable in length. One end of the molecule after Hsu I endonuclease cleavage consists of approximately 3,000 base pairs, with as many as 10 additional 500-base pair segments. The opposite end of the molecule after Sal I endonuclease cleavage consists of approximately 1,500 base pairs, with as many as 10 additional 500-base pair segments. (iii) The opposite ends of the molecule contain homologous sequences. The high degree of homology between the opposite ends of the molecule and the similarity in size of the "additional" 500-base pair segments suggests that there are identical repeating units at both ends of the DNA. The arrangement of restriction endonuclease fragments of the DNA of the W91 isolate of EBV is similar to that of the B95-8 isolate and differs from the latter in the presence of approximately 7 X 10(6) daltons of "extra" DNA at a single site. Thus, the size of almost all EcoRI, Hsu I, and Sal I fragments of EBV (W91) DNA is identical to that of fragments of EBV (B95-8) DNA. A single EcoRI fragment, C, of EBV (W91) DNA is approximately 7 X 10(6) daltons larger than the corresponding EcoRI fragment of EBV (B95-8) DNA. Digestion of EBV (W91) DNA with Hsu I or Sal I restriction endonucleases produces two fragments (Hsu I D1 and D2 or Sal I G2 and G3) which differ in total size by approximately 7 X 10(6) daltons from the fragments of EBV (B95-8) DNA. Furthermore, the EcoRI, Hsu I, and Sal I fragments of EBV (W91) and (B95-8) DNAs, which are of similar molecular weight, have homologous nucleotide sequences. Moreover, the W91 fragments contain only sequences from a single region of the B95-8 genome. Two lines of evidence indicate that the "extra" sequences present in W91 EcoRI fragment C are viral DNA and not cellular. (i) The molecular weight of the "enlarged" EcoRI C fragment of EBV (W91) DNA is identical to that of the EcoRI C fragment of another isolate of EBV (Jijoye), (ii) The HR-1 clone of Jijoye has previously been shown to contain DNA which is not present in the B95-8 strain but is present in the EcoRI C and Hsu I D2 and D1 fragments of EBV (W91) DNA (N. Raab-Traub, R. Pritchett, and E. Kieff, J. Virol. 27:388-398, 1978).  相似文献   

12.
Unintegrated, circular viral DNA, isolated from Prague A avian sarcoma virus (PrA-ASV)-infected quail cells (QT6), was cloned in the lambda vector lambda gtWES x lambda B. Three independent lambda-ASV recombinants were identified, and each contained a complete copy of the PrA-ASV genome. The arrangement of the ASV sequences within the recombinants was determined by restriction enzyme analysis and hybridization with labeled ASV-specific complementary DNA. One of the recombinants (lambda RPA101) resulted from cloning at the EcoRI site located within the terminally repeated sequence and therefore was virtually co-linear with PrA-ASV virion RNA. The other two recombinants (lambda RPA102 and 103) resulted from cloning at the EcoRI site located within the viral env gene. By restriction enzyme analysis and by measurement of R-loops formed between lambda RPA101 and PrA-ASV virion 35S RNA, the viral genome was estimated to be 9,100 bases in length. Genome length viral DNA purified from clones lambda RPA102 and 103 was biologically active. Transfection of chicken embryo cells with viral DNA, in the form of either circles or linear dimers, produced foci of transformed cells within 8 to 10 days. Linear DNA was much less efficient at inducing transformation. Viral DNA from the clone lambda RPA101 was unable to cause transformation; the basis for this defect is unknown.  相似文献   

13.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

14.
The DNA of herpesvirus pan, a primate B-lymphotropic herpesvirus, shares about 40% well-conserved sequence relatedness with Epstein-Barr virus (EBV) and herpesvirus papio DNAs. Labeled cloned fragments from the EBV recombinant DNA library were cross hybridized to blots of EcoRI, XbaI, and BamHI restriction endonuclease fragments of herpesvirus pan DNA to identify and map homologous sequences in the herpesvirus pan genome. Regions of colinear homology were demonstrated between 6 x 10(6) daltons and 108 x 10(6) daltons in the DNAs. The structural organization of herpesvirus pan DNA was similar to the format of Epstein-Barr virus and herpesvirus papio DNAs. The DNA consists of two domains of largely unique sequence complexity, a segment US of 9 x 10(6) daltons and a segment UL of 88 x 10(6) daltons. US and UL are separated by a variable number of tandem repetitions of a sequence IR (2 x 10(6) daltons). There was homology between DNA which mapped at 26 to 28 x 10(6) daltons and 93 to 95 x 10(6) daltons in UL. The terminal reiteration component, TR, of herpesvirus pan DNA and sequences which mapped to the left of 6 x 10(6) daltons and to the right of 108 x 10(6) daltons had no detectable homology with the corresponding regions of Epstein-Barr virus DNA.  相似文献   

15.
Physical mapping of a temperature-sensitive (ts) mutation of human cytomegalovirus (HCMV) strain AD-169 was attempted here using cloned HindIII restriction endonuclease fragments and the mutant virus. The DNA-positive mutant tested (HCMV ts 1585) was successfully rescued by viral DNA sequences between 0.277 and 0.303 map units. The product of this gene is apparently a structural protein of molecular weight 40,000. Marker rescue could thus be used to establish the physical location of essential HCMV genes, even if the viral DNA molecule is extremely large and complex.  相似文献   

16.
Sequences representative of the whole genome of herpes simplex virus type 1 (HSV-1) strain KOS were cloned in the plasmid vector pBR325 in the form of EcoRI-generated DNA fragments. The cloned fragments were identified by digestion of the chimeric plasmid DNA with restriction enzymes EcoRI or EcoRI and BglII followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested HSV-1 virion DNA. The cloned fragments showed the same migration patterns as the corresponding fragments from restricted virion DNA, indicating that no major insertions or deletions were present. The presence of HSV-1 sequences in the chimeric plasmids was confirmed by hybridization of plasmid DNA to HSV-1 virion DNA. Additionally, some of the cloned fragments were shown to be biologicaly active in that they efficiently rescued three HSV-1 temperature-sensitive mutants in cotransfection marker rescue experiments.  相似文献   

17.
The unintegrated viral DNA intermediates of colobus type C virus (CPC-1) were isolated from infected human cells that were permissive for viral growth. There were two major species of DNA, linear molecules with two copies of the long terminal repeat and relaxed circles containing only a single long terminal repeat. In addition, there was a minor species (approximately 10%) composed of relaxed circles with two copies of the long terminal repeat. A restriction endonuclease map of the unintegrated DNA was constructed. The three EcoRI fragments of circular CPC-1 DNA were cloned in the EcoRI site of lambda gtWES . lambda B and then subcloned in the EcoRI site of pBR322. Using these subgenomic fragments as probes, we have characterized the endogenous viral sequences found in colobus cellular DNA. They are not organized in tandem arrays, as is the case in some other gene families. The majority of sequences detected in cellular DNA have the same map as the CPC-1 unintegrated DNA at 17 of 18 restriction endonuclease sites. There are, however, other sequences that are present in multiple copies and do not correspond to the CPC-1 map. They do not contain CPC-1 sequences either in an altered form or fused to common nonviral sequences. Instead, they appear to be derived from a distinct family of sequences that is substantially diverged from the CPC-1 family. This second family of sequences, CPC-2, is also different from the sequences related to baboon endogenous type C virus that forms a third family of virus-related sequences in the colobus genome.  相似文献   

18.
Organization of delta-crystallin genes in the chicken.   总被引:9,自引:1,他引:8       下载免费PDF全文
Double-stranded DNA was synthesized from delta-crystallin mRNA prepared from lens fibers of 15-day-old chick embryos and cloned at the Pst I site of the plasmid pBR322. Using the cloned cDNA and single-stranded cDNA as hybridization probes, a number of genomic DNA fragments containing delta-crystallin gene sequences have been cloned from the partial and complete EcoRI digests of chick brain DNA. One of the clones from the partial digests contains a DNA fragment that consists of four EcoRI fragments of 7.6 kb, 4.0 kb, 2.6 kb, and 0.8 kb. The gene sequences reside in the (5')7.6 kb - 0.8 kb - 4.0 kb (3') fragments. Electron microscopy has provided evidence that the cloned DNA fragment includes the entire gene sequences complementary to delta-crystallin mRNA except for the 3' terminal poly(A) tail, and that the delta-crystallin gene is interrupted by at least 13 intervening sequences. Another clone contains a genomic fragment that consists of two EcoRI fragments of 3.0 kb and 11 kb. The DNA fragment in the latter clone represents a different delta-crystallin gene, as judged by restriction endonuclease mapping and by electron microscopy.  相似文献   

19.
In order to study the derivation of the macronuclear genome from the micronuclear genome in Oxytricha nova micronuclear DNA was partially digested with EcoRI, size fractionated, and then cloned in the lambda phage Charon 8. Clones were selected a) at random b) by hybridization with macronuclear DNA or c) by hybridization with clones of macronuclear DNA. One group of these clones contains only unique sequence DNA, and all of these had sequences that were homologous to macronuclear sequences. The number of macronuclear genes with sequences homologous to these micronuclear clones indicates that macronuclear sequences are clustered in the micronuclear genome. Many micronuclear clones contain repetitive DNA sequences and hybridize to numerous EcoRI fragments of total micronuclear DNA, yielding similar but non-identical patterns. Some micronuclear clones containing these repetitive sequences also contained unique sequence DNA that hybridized to a macronuclear sequence. These clones define a major interspersed repetitive sequence family in the micronuclear genome that is eliminated during formation of the macronuclear genome.  相似文献   

20.
The restriction endonuclease EcoRI has been used to study the inheritance of strain difference in endogenous mouse mammary tumor virus DNA sequences. This enzyme, which cleaves at only one site within the nondefective viral genome, generates DNA fragments containing mouse mammary tumor virus sequences which vary in size according to the locations of EcoRI restriction sites in the flanking mouse sequences, thereby defining unique integration sites of the viral genome. Recombinant inbred strains of mice have been used to study the inheritance of these DNA fragments which hybridize to mouse mammary tumor virus cDNA sequences. The results define 11 segregating units consisting of 1 or 2 fragments. These units were shown to segregate among the recombinant inbred strains, and in some instances linkage was established. Two units were shown to be linked on chromosome 1. Another unit was mapped to chromosome 7, which is presumably identical to the previously defined genetic locus Mtv- 1. One other mouse mammary tumor virus locus was tentatively assigned to chromosome 6. The results are consistent with the view that integration of mouse mammary tumor virus can take place at numerous sites within the genome, and once inserted, these proviruses appear to be relatively stable genetic entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号