首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1990,111(6):2713-2723
The distribution of the extracellular matrix protein thrombospondin (TSP) in cleavage to egg cylinder staged mouse embryos and its role in trophoblast outgrowth from cultured blastocysts were examined. TSP was present within the cytoplasm of unfertilized eggs; in fertilized one- to four-cell embryos; by the eight-cell stage, TSP was also densely deposited at cell-cell borders. In the blastocyst, although TSP was present in all three cell types; trophectoderm, endoderm, and inner cell mass (ICM), it was enriched in the ICM and at the surface of trophectoderm cells. Hatched blastocysts grown on matrix-coated coverslips formed extensive trophoblast outgrowths on TSP, grew slightly less avidly on laminin, or on a 140-kD fragment of TSP containing its COOH terminus and putative cell binding domains. There was little outgrowth on the NH2 terminus heparin-binding domain. Addition of anti-TSP antibodies (but not GRGDS) to blastocysts growing on TSP strikingly inhibited outgrowth. Consistent with its early appearance and presence in trophoblast cells during implantation, TSP may play an important role in the early events involved in mammalian embryogenesis.  相似文献   

2.
3.
Tunicamycin, an antimetabolite which inhibits the N-glycosylation of proteins, does not block the initial cleavages of mouse embryos, even at relatively high concentrations. However, it can interfere with compaction and blastocyst formation. Although tunicamycin treatment from the two-cell or eight-cell stage can cause developmental arrest prior to hatching from the zona pellucida, much higher (sublethal) concentrations of the antimetabolite added at the morula or blastocyst stage do not specifically affect hatching of blastocysts, their attachment to the substratum, or outgrowth of trophoblast cells. The consequence of continuous exposure of embryos to moderate amounts (0.05 to 0.1 μg/ml) of tunicamycin through peri-implantation stages is death of trophoblast cells with little effect upon the cells of the inner cell mass (ICM). The latter give rise to apparently normal early endoderm cells in the presence of the antimetabolite. The incorporation of leucine, mannose, and fucose into acid-insoluble material by ICM cells is only minimally inhibited by tunicamycin. On the other hand, the antimetabolite causes a severe inhibition of incorporation of not only mannose, but also leucine, into acid-insoluble material in trophoblast cells. Thus, trophoblast cells resemble transformed cells by their extreme sensitivity to tunicamycin.  相似文献   

4.
The study was performed to investigate direct embryotoxic effects of maternal progestin treatment during the preimplantation period. In the first experiment pregnant mice received a single subcutaneous injection of either cyproterone acetate (CA) or medroxyprogesterone acetate (MPA) on day 2 of pregnancy (5-600 mg/kg). In a second experiment four-cell embryos were exposed to CA or MPA in vitro (3 or 30 micrograms/ml medium). Our results revealed: (1) After maternal treatment the number of live embryos was reduced after the highest CA dose. Development into blastocysts was inhibited in a dose-related manner after CA but not after MPA. The number of cells in morulae, blastocysts, and of the inner cell mass (ICM) of late blastocysts was not affected. (2) When morulae and blastocysts were cultured in vitro after maternal treatment, hatching, attachment, and trophoblast outgrowth were inhibited after high doses, but development and differentiation of the ICM were inhibited even after low doses. (3) Application of 30 micrograms/ml of CA or MPA in vitro was directly embryolethal. Three micrograms/ml did not affect development into blastocysts, but ICM development and differentiation were again inhibited during subsequent culture in hormone-free medium. (4) Qualitative protein synthesis was altered in morulae and blastocysts 24 hours after maternal CA treatment. According to our results high doses of progestins are embryotoxic before implantation, low doses have delayed effects on embryonic development that are particularly evident after implantation in vitro.  相似文献   

5.
In vitro culture of bovine egg fertilized either in vivo or in vitro   总被引:4,自引:0,他引:4  
Three-quarters of in vivo and one-third of in vitro fertilized bovine eggs reached blastocyst stage when cultured on tubal cell monolayers (TCM), but no hatching occurred in B2 medium supplemented with estrous cow serum. When after 3 days of culture on TCM, morulae were transferred on endometrial cell monolayers (UCM), the same proportion of blastocysts was obtained and one-third of them hatched. Histological studies of hatched blastocysts showed that the number of inner cells was significantly lower than in hatched blastocysts recovered in vivo 8-8.5 days after ovulation. Moreover, the number of pycnotic cells was higher than normal, although mitosis were present. On the contrary, there was no difference in either the number or the appearance of trophoblastic cells between blastocysts obtained in vitro and in vivo. The addition of transforming growth factor (TGF-beta) to either TCM or UCM co-cultures at the very beginning of blastocyst formation specifically stimulated growth of the inner cell mass (ICM). The number of cells at hatching was about double (120) and significantly higher than that found in 8-8.5-day blastocysts in vivo. Moreover, hatching percentages were similar to the controls, even when eggs were cultured for 8 days only on TCM. However the proportion of pycnotic cells remained higher than normal, although many mitotic cells were unevenly distributed in ICM) In vivo during hatching, there were always pycnotic cells in ICM, but their number was limited and approximately similar to the number of mitosis. The uterine factors which control both mitosis and pycnosis in ICM remain to be discovered.  相似文献   

6.
A Spindle  K Wu 《Teratology》1985,32(2):213-218
Mouse blastocysts were treated with caffeine and/or benzo(a)pyrene (BP), and the effects on development and on induction of sister chromatid exchanges (SCEs) were examined. Caffeine interfered with blastocyst development in a dose-related manner. At 4 mM, the highest concentration tested, caffeine interfered with development of blastocysts to all four endpoints: hatching, trophoblast outgrowth, inner cell mass (ICM) growth, and two-layer (primary endoderm and ectoderm) differentiation of ICMs. At 2 mM, caffeine reduced the incidence of both ICM growth and differentiation but did not affect hatching or formation of trophoblast outgrowths. At 1 mM, caffeine interfered only with ICM differentiation. Cell proliferation was least sensitive to caffeine and was reduced at concentrations of greater than or equal to 2 mM. Induction of SCEs was most sensitive to caffeine exposure; an increase in SCE frequency was observed at 0.1 and 0.5 mM. When caffeine was added to cultures with BP (1 microM, a concentration that was not embryotoxic and did not induce SCEs), both embryotoxic effects and SCE frequency were increased. The enhancing effect on SCE induction was particularly marked; as little as 0.1 mM caffeine was sufficient to cause doubling of induced SCE frequencies when added to cultures with BP.  相似文献   

7.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The objective of these experiments was to assess putative embryotrophic effects of leukemia inhibitory factor (LIF) on bovine preimplantation development in chemically defined media. Recombinant human LIF was added to embryo culture media at a concentration of 100 ng/ml. When added for culture of morulae LIF had no positive effect on the proportion of embryos reaching the blastocyst stage. However, LIF significantly reduced development to the blastocyst stage when added for culture of 4-cell stage embryos (P<0.05). In contrast, a positive effect was found for progression of blastocyst development. In vitro blastocyst hatching rates were significantly improved in the presence of LIF (P<0.02). Number of total cells and of inner cell mass (ICM) cells were increased in LIF-treated blastocysts. In vitro survival of frozen-thawed blastocysts was not improved by adding LIF to morula stage embryos before cryopreservation. The pregnancy rate after direct transfer of cryopreserved LIF-treated embryos was not different from that for untreated control embryos. Data indicate that addition of LIF has no major beneficial effect on bovine embryos produced in these chemically defined conditions.  相似文献   

9.
Previous studies have suggested that fibroblast growth factor-4 (FGF-4) may be a paracrine signal used by inner cell mass (ICM) cells to maintain adjacent trophectoderm (TE) cells in an undifferentiated state. In the present work, immunocytochemical analysis of mouse blastocysts confirmed that FGF-4 was predominantly detected in the ICM before and after spreading over a fibronectin-coated culture substrate. Addition of human recombinant FGF-4 did not influence morphological progression, cell allocation and proliferation in ICM and TE lineages or mitosis and karyorhexis frequencies during blastocyst expansion. Addition of FGF-4 to outgrowing blastocysts, in contrast, induced a significant decrease in the surface of the trophoblast outgrowths formed by the TE cells and in the proportion of giant trophoblasts per outgrowth. The fact that blastocysts display excessive trophoblast expansion and spreading over their culture substrate upon pre-exposure to high concentrations of glucose in vitro was used to further assess the regulatory effect of FGF-4. Addition of FGF-4 was indeed found to fully neutralize the disruptive impact of high glucose on trophoblast outgrowths. Altogether, our data indicate that ICM-derived FGF-4 participates actively in the regulation of trophoblast development.  相似文献   

10.
Leukemia inhibitory factor (LIF) is an essential factor for implantation and establishment of pregnancy. However, its role in the development of preimplantation embryos remains controversial. In this study, changes in preimplantation embryos were determined after microinjection of LIF antisense oligonucleotide at the two-pronucleus stage. Although no significant differences were found in the percentages between the untreated group and the 0.25-fmol-treated group, the 0.5- or 1.0-fmol-treated groups had significantly lower percentages of embryos developed to the morula or blastocyst stage and the 2.0-fmol-treated group had significantly lower percentages of embryos developed to the four-cell, morula, or blastocyst stage. No embryos developed to the four-cell stage in the 4.0-fmol-treated group. Moreover, there was a decreasing trend in the levels of LIF immunoactivity with the increasing amount of LIF antisense oligonucleotide injected. The diameter of blastocysts in the 2.0-fmol-treated group was significantly smaller than that in the untreated group. The blastocysts in this group had significantly lower numbers of blastomeres and cells in the inner cell mass (ICM) or trophectoderm (TE) and ICM:TE ratio. The 1.0- or 2.0-fmol-treated groups had significantly lower implantation rates than their corresponding control groups. In the 2.0-fmol groups with supplementing exogenous LIF, significantly lower percentages were also observed in the four-cell, morula, and blastocyst stages. However, blastocysts treated with 50 ng/ml LIF had a significantly higher percentage than those in the LIF gene-impaired group without LIF supplement. These results indicate that LIF is a critical factor for the normal development of embryos at the preimplantation stages.  相似文献   

11.
We studied the effects of cytokine LIF on in vitro development of 2-cell mouse embryos to the late blastocyst stage. LIF at 10 ng/ml enhanced the blastocyst formation and hatching from zona pellucida. When blastocysts were cultivated in a medium with LIF for a longer time, the trophoblast adhesive properties and proliferative activity were enhanced. In the presence of this cytokine, the trophoblast cells were attached to the substrate surface and fulfill the function of a sublayer for growth of the inner cell mass colonies with a high activity of endogenous alkaline phosphatase. Expression of LIF was detected in the oviduct and uterus epithelial tissues from day 1 until day 4 of pregnancy, thus suggesting its involvement in early development. According to the data of cultivation, cytokine LIF enhanced the adhesive properties and functional activity of the trophoblast cells, which is essential for implantation of blastocysts in the uterus.  相似文献   

12.
Protein secretion from mouse blastocysts undergoing attachment and trophoblast outgrowth in vitro was assessed. When Day 5 blastocysts were cultured in serum-containing medium, secretion of several 'attachment-associated' proteins (PAS) was initiated within 24 h, coincident with attachment and outgrowth. Those proteins characteristic of the pre-attachment blastocyst disappeared or made-up only a small portion of the secretions once attachment began. The major secreted protein from attached embryos, PA1, is a 35,000-45,000 Mr acidic glycoprotein with multiple isoelectric forms. PA2, a group of basic 40,000 Mr proteins and PA3 a group of 72,000 Mr proteins were also produced during outgrowth. PAS were secreted during outgrowth on fibronectin-coated plastic in serum-free medium, but not by blastocysts held in a non-attachment state during culture in serum-free medium on uncoated plastic. In pre-attachment blastocysts, secreted proteins were produced by trophoblast vesicles, but not by isolated inner cell masses. Both trophoblast vesicles growing out in vitro and surgically isolated trophoblast from spreading blastocysts had secreted protein patterns qualitatively similar to those of intact blastocyst outgrowths. The results indicate that development of trophoblast protein secretion continues through the period of outgrowth and giant cell transformation. These changes are apparently dependent on attachment of the blastocyst to a suitable substrate, but not dependent on any other serum influence.  相似文献   

13.
We investigated the extent to which NO participates in the developmental competence (oocyte maturation, fertilization and embryo development to blastocyst) using an in vitro culture system adding sodium nitroprusside (SNP), NO donor, and NOS inhibitor (N-omega-nitro-L-arginine methyl ester, L-NAME). We also assessed the effects of NO/NOS system on blastocyst implantation using an in vitro trophoblast outgrowth assay. The treatment of low concentrations of SNP (10(-7) M) significantly stimulated meiotic maturation to metaphase II stages in cumulus enclosed oocytes. In contrast, 10(-3) and 10(-5) M L-NAME demonstrated a significant suppression in resumption of meiosis. This inhibition was reversed by the addition of SNP. No development beyond the four-cell stage was observed by the addition of high concentration of SNP (10(-3) M). Inhibition of embryo development, especially the conversion of morulae to blastocysts, was also observed in the treatment of lower doses of SNP (10(-5) and 10(-7) M). Similarly, inhibition of NO by NOS inhibitor resulted in the dose-dependent inhibition of embryo development and hatching rates, but the concomitant addition of SNP with L-NAME reversed the inhibitory effect by each SNP or L-NAME treatment. Furthermore, low concentration of SNP (10(-7) M) but not high concentration of SNP (10(-3) M) significantly stimulated trophoblast outgrowth, whereas the addition of L-NAME suppressed the spreading of blastocysts in a dose-dependent manner. These results suggest that NO may have crucial roles in oocyte maturation and embryogenesis including the process of implantation. The observed differences in required amount of NO and the sensitivity to cytotoxicity of NO in each developmental stage embryos may also suggest that NO/NOS system is tightly regulated in developmental stage specific manner.  相似文献   

14.
Development of preimplantation embryos of the Siberian hamster (Phodopus sungorus) in vivo and in vitro was examined. The timing of early development in vivo was found to be slower than that reported for the golden hamster. Progression through the cleavage stages, cavitation, and hatching from the zona pellucida occurred later, with blastocyst formation beginning on the afternoon of day 4 and uterine attachment occurring early on day 5. In vitro, morulae, and early blastocysts collected on day 4 and cultured in serum-containing medium formed expanded blastocysts and some began to hatch from the zona pellucida. With extended culture, blastocysts attached and formed trophoblast outgrowths. Outgrowth was characterized by an initial migration of small cells from the blastocyst, followed by formation of a sheet of trophoblast giant cells. Differences in the morphology of outgrowth between the hamster and mouse suggest that further comparative studies with the Siberian hamster may be useful.  相似文献   

15.
Four-cell to blastocyst stage bovine embryos were collected from superovulated donors and cultured for 90 min in Ham's F-10 medium (HF-10) containing 10% (V/V) absorbed anti-histocompatibility (H)-Y antiserum. Embryos were then washed 3 times and placed in HF-10 supplemented with 10% (V/V) fluorescein isothiocynate (FITC)-conjugated goat anti-mouse gamma globulin. After an additional wash, embryos were placed in fresh drops of HF-10, individually evaluated at 200 X magnification, and classified as either fluorescent (H-Y-positive) or nonfluorescent (H-Y-negative). Embryos were then placed in drops of HF-10 containing 14% vinblastin and cultured for 4-6 h. Embryos were coded and individually karotyped, and the sex chromosomes were identified. H-Y antigen was detected as early as the eight-cell stage, but not at the four-cell stage. Seventy-nine percent of fluorescent embryos and 89% of nonfluorescent embryos were XY and XX, respectively. Another experiment was carried out in which H-Y antigen was detected on intact inner cell masses (ICM) isolated by immunosurgery from expanded blastocysts that also had been assayed for H-Y antigen. Eighty-eight and 92%, respectively, of ICM classified as fluorescent or nonfluorescent had been scored the same as intact blastocysts. It is concluded from these data that H-Y antigen can be detected on eight-cell to blastocyst stage bovine embryos. There appears to be a localization of detectable antigen in the area of the ICM at the expanded blastocyst stage. Detection of H-Y antigen is an effective, noninvasive method for identification of the sex of preimplantation bovine embryos.  相似文献   

16.
Chlorpromazine, administered to pregnant CBA mice 56 h after copulation in single doses of 10 or 15 mg/kg bodyweight, inhibited the compaction of embryos, formation of blastocysts, and reduced the mitotic index and cell number of embryos 86 h after copulation but did not adversely influence their viability or induce structural chromosomal aberrations. Blastocyst formation was more severely affected than embryo compaction. When 86-h embryos were treated with chlorpromazine (10 or 15 mg/kg) and subsequently cultured for 120 h, there was delayed hatching from the zona pellucida, delayed attachment to the culture dish, outgrowth of the trophoblast and expansion of the inner cell mass. Mice treated identically and evaluated on the 18th day of gestation had fewer implanted embryos than did controls, and the fetuses weighed less. No resorptions, malformations or significant differences in intrauterine deaths were found. Chlorpromazine given in the same manner but at 0.5 mg/kg did not affect any of the aforementioned criteria. When 56 h embryos were cultured in vitro in the presence of 50 microM-chlorpromazine for a further 40 h, embryo compaction, blastocyst formation, the mitotic index and the total cell number were significantly reduced compared with controls. Blastocyst formation was again more severely affected than embryo compaction. The inhibition of embryo compaction, blastocyst formation, and reduction in mitotic index and cell number associated in this study with chlorpromazine in vivo and in vitro indicate that the drug inhibits the development of cleavage-stage embryos in the mouse. These effects might be mediated by antagonistic effects of calmodulin.  相似文献   

17.
We studied the effects of cytokine LIF on in vitro development of 2-cell mouse embryos to the late blastocyst stage. LIF at 10 ng/ml enhanced the blastocyst formation and hatching from zona pellucida. When blastocysts were cultivated in a medium with LIF for a longer time, the trophoblast adhesive properties and proliferative activity were enhanced. In the presence of this cytokine, the trophoblast cells were attached to the substrate surface and fulfill the function of a sublayer for growth of the inner cell mass colonies with a high activity of endogenous alkaline phosphatase. Expression of LIF was detected in the oviduct and uterus epithelial tissues from day 1 until day 4 of pregnancy, thus suggesting its involvement in early development. According to the data of cultivation, cytokine LIF enhanced the adhesive properties and functional activity of the trophoblast cells, which is essential for implantation of blastocysts in the uterus.  相似文献   

18.
19.
20.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号