首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lens βγ-crystallin superfamily has many diverse but topologically related members belonging to various taxa. Based on structural topology, these proteins are considered to be evolutionarily related to lens crystallins, suggesting their origin from a common ancestor. Proteins with βγ-crystallin domains, although found in some eukaryotes and eubacteria, have not yet been reported in archaea. Sequence searches in the genome of the archaebacterium Methanosarcina acetivorans revealed the presence of a protein annotated as a βγ-crystallin family protein, named M-crystallin. Solution structure of this protein indicates a typical βγ-crystallin fold with a paired Greek-key motif. Among the known structures of βγ-crystallin members, M-crystallin was found to be structurally similar to the vertebrate lens βγ-crystallins. The Ca2 +-binding properties of this primordial protein are somewhat more similar to those of vertebrate βγ-crystallins than to those of bacterial homologues. These observations, taken together, suggest that amphibian and vertebrate βγ-crystallin domains are evolutionarily more related to archaeal homologues than to bacterial homologues. Additionally, identification of a βγ-crystallin homologue in archaea allows us to demonstrate the presence of this domain in all the three domains of life.  相似文献   

2.
βγ-Crystallins are a superfamily of proteins containing crystallin-type Greek key motifs. Some βγ-crystallin domains have been shown to bind Ca2+. Hahellin is a newly identified intrinsically disordered βγ-crystallin domain from Hahella chejuensis. It folds into a typical βγ-crystallin structure upon Ca2+ binding and acts as a Ca2+-regulated conformational switch. Besides Hahellin, another two putative βγ-crystallins from Caulobacter crescentus and Yersinia pestis are shown to be partially disordered in their apo-form and undergo large conformational changes upon Ca2+ binding, although whether they acquire a βγ-crystallin fold is not known. The extent of conformational disorder/order of a protein is determined by its amino acid sequence. To date how this sequence–structure relationship is reflected in the βγ-crystallin superfamily has not been investigated. In this work, we comparatively studied the sequence and structure of Hahellin with those of Protein S, an ordered βγ-crystallin, via various computational biophysical techniques. We found that several factors, including presence of a C-terminal disorder prone region, high content of energetic frustrations, and low contact density, may promote the formation of the disordered state of apo-Hahellin. We also analyzed the disorder propensities for other putative disordered βγ-crystallin domains. This study provides new clues for further understanding the sequence–structure–function relationship of βγ-crystallins.  相似文献   

3.
The βγ-crystallin superfamily has a well-characterized protein fold, with several members found in both prokaryotic and eukaryotic worlds. A majority of them contain two βγ-crystallin domains. A few examples, such as ciona crystallin and spherulin 3a exist that represent the eukaryotic single-domain proteins of this superfamily. This study reports the high-resolution crystal structure of a single-domain βγ-crystallin protein, nitrollin, from the ammonium-oxidizing soil bacterium Nitrosospira multiformis. The structure retains the characteristic βγ-crystallin fold despite a very low sequence identity. The protein exhibits a unique case of homodimerization in βγ-crystallins by employing its N-terminal extension to undergo three-dimensional (3D) domain swapping with its partner. Removal of the swapped strand results in partial loss of structure and stability but not dimerization per se as determined using gel filtration and equilibrium unfolding studies. Overall, nitrollin represents a distinct single-domain prokaryotic member that has evolved a specialized mode of dimerization hitherto unknown in the realm of βγ-crystallins.  相似文献   

4.
Most of the βγ-crystallins are structural proteins with high intrinsic stability, which gets enhanced by Ca(2+)-binding in microbial members. Functions of most of these proteins are yet to be known. However, a few of them were reported to be involved in Ca(2+)-dependent and stress-related functions. Hahellin, a microbial homolog, is a natively unfolded protein that acquires a well-folded structure upon Ca(2+) binding. Although the structure of βγ-crystallin domains is well understood, the dynamical features are yet to be explored. We have investigated for the first time the equilibrium dynamics, conformational heterogeneity and associated low-lying free-energy states of hahellin in its Ca(2+)-bound form using NMR spectroscopy to understand the dynamics of a βγ-crystallin domain. Hahellin shows large conformational heterogeneity with nearly 40% of the residues, some of which are part of Ca(2+)-binding loops, accessing alternative states. Further, out of the two Greek key motifs, which together constitute the βγ-crystallin domain, the second Greek key motif is floppy as compared to its relatively rigid counterpart. Taken together, we believe that these characteristics might be of importance to understand the stability and functions of βγ-crystallin domains.  相似文献   

5.
The superfamily of eye lens betagamma-crystallins is highly modularized, with Greek key motifs being used to form symmetric domains. Sequences of monomeric gamma-crystallins and oligomeric beta-crystallins fold into two domains that pair about a further conserved symmetric interface. Conservation of this assembly interface by domain swapping is the device adopted by family member betaB2-crystallin to form a solution dimer. However, the betaB1-crystallin solution dimer is formed from an interface used by the domain-swapped dimer to form a tetramer in the crystal lattice. Comparison of these two structures indicated an intriguing relationship between linker conformation, interface ion pair networks, and higher assembly. Here the X-ray structure of recombinant human betaB2-crystallin showed that domain swapping was determined by the sequence and not assembly conditions. The solution characteristics of mutants that were designed to alter an ion pair network at a higher assembly interface and a mutant that changed a proline showed they remained dimeric. X-ray crystallography showed that the dimeric mutants did not reverse domain swapping. Thus, the sequence of betaB2-crystallin appears well optimized for domain swapping. However, a charge-reversal mutation to the conserved domain-pairing interface showed drastic changes to solution behavior. It appears that the higher assembly of the betagamma-crystallin domains has exploited symmetry to create diversity while avoiding aggregation. These are desirable attributes for proteins that have to exist at very high concentration for a very long time.  相似文献   

6.
Srivastava AK  Sharma Y  Chary KV 《Biochemistry》2010,49(45):9746-9755
To date, very few βγ-crystallins have been identified and structurally characterized. Several of them have been shown to bind Ca(2+) and thereby enhance their stability without any significant change in structure. Although Ca(2+)-induced conformational changes have been reported in two putative βγ-crystallins from Caulobacter crescentus and Yersinia pestis, they are shown to be partially unstructured, and whether they acquire a βγ-crystallin fold is not known. We describe here a βγ-crystallin domain, hahellin, its Ca(2+) binding properties and NMR structure. Unlike any other βγ-crystallin, hahellin is characterized as a pre-molten globule (PMG) type of natively unfolded protein domain. It undergoes drastic conformational change and acquires a typical βγ-crystallin fold upon Ca(2+) binding and hence acts as a Ca(2+)-regulated conformational switch. However, it does not bind Mg(2+). The intrinsically disordered Ca(2+)-free state and the close structural similarity of Ca(2+)-bound hahellin to a microbial βγ-crystallin homologue, Protein S, which shows Ca(2+)-dependent stress response, make it a potential candidate for the cellular functions. This study indicates the presence of a new class of natively unfolded βγ-crystallins and therefore the commencement of the possible functional roles of such proteins in this superfamily.  相似文献   

7.
Numerous proteins belonging to the recently expanded βγ-crystallin superfamily bind Ca(2+) at the double-clamp N/D-N/D-X(1)-X(2)-S/T-S motif. However, there have been no attempts to understand the intricacies involving Ca(2+) binding, such as the determinants of Ca(2+)-binding affinity and their contributions to gain in stability. This work is an in-depth analysis of understanding the modes and determinants of Ca(2+) binding to βγ-crystallin motifs. We have performed extensive naturally occurring substitutions from related proteins on the βγ-crystallin domains of flavollin, a low-affinity Ca(2+)-binding protein, and clostrillin, a moderate-affinity protein. We monitored the consequences of these modifications on Ca(2)(+) binding by isothermal titration calorimetry, thermal stability and conformational and crystal structure analyses. We demonstrate that Ca(2)(+) binding to the two sites of a βγ-domain is interdependent and that the presence of Arg at the fifth position disables a site. A change from Thr to Ser, or vice versa, influences Ca(2+)-binding affinity, highlighting the basis of diversity found in these domains. A subtle change in the first site has a greater influence on Ca(2)(+) binding than a similar alteration in the second site. Thus, the second site is more variable in nature. Replacing an acidic or hydrophobic residue in a binding site alters the Ca(2+)-binding properties drastically. While it appears from their binding site sequence that these domains have evolved randomly, our examination illustrates the subtlety in the design of these modules. Decoding such design schemes would aid in our understanding of the functional themes underlying differential Ca(2)(+) binding and in predicting these in emerging sequence information.  相似文献   

8.
Rajini B  Graham C  Wistow G  Sharma Y 《Biochemistry》2003,42(15):4552-4559
AIM1 (absent in melanoma), a candidate suppressor of malignancy in melanoma, is a nonlens member of the betagamma-crystallin superfamily, which contains six predicted betagamma domains. The first betagamma-crystallin domain of AIM1 (AIM1-g1) diverges most in sequence from the superfamily consensus. To examine its ability to fold and behave like a normal betagamma domain, we cloned AIM1-g1 and overexpressed it in Escherichia coli as a recombinant protein. The recombinant domain was found to be a stable, soluble protein, similar to lens protein gammaBeta-crystallin in secondary structure. The tertiary structure of AIM1-g1 is dominated by the contribution of aromatic amino acids and cysteine. AIM1-g1 undergoes concentration-independent, noncovalent homodimerization with no trace of monomer, similar to a one-domain protein spherulin 3a. Since many betagamma domain proteins bind calcium, we have also investigated the calcium-binding properties of AIM1-g1 by various methods. AIM1-g1 binds the calcium-mimic dye Stains-all, the calcium probe terbium (with K(D) 170 microM), and (45)Ca when blotted on a membrane. AIM1-g1 binds calcium (K(D) 30 microM) with a comparatively higher affinity than bovine lens gamma-crystallin (90 microM). However, calcium binding does not induce significant change in the protein conformation in the near- and far-UV CD and in fluorescence. The AIM1-g1 domain is as stable as domains of betagamma-crystallins (betaB2- or gammaS-crystallins) as monitored by guanidinium chloride unfolding (midpoint of unfolding transition is 1.8 M GdmCl), and the stability of the protein is not altered upon binding calcium as evaluated by equilibrium unfolding. These results show that, despite the sequence variation, AIM1-g1 folds such as a betagamma domain, binds calcium and undergoes dimerization.  相似文献   

9.
Gao Q  Xiang Y  Zeng L  Ma XT  Lee WH  Zhang Y 《Biochimie》2011,93(10):1865-1872
βγ-CAT is a naturally existing 72-kDa complex of a non-lens βγ-crystallin (α-subunit, CAT-α) and a trefoil factor (β-subunit, CAT-β) that contains a non-covalently linked form of αβ2 and was isolated from the skin secretions of the toad Bombina maxima. The N-terminal region of CAT-α (CAT-αN, residues 1–170) contains two βγ-crystallin domains while the C-terminal region (CAT-αC) has sequence homology to the membrane insertion domain of the Clostridium perfringens epsilon toxin. To examine the biochemical characteristics of the βγ-crystallin domains of βγ-CAT, CAT-αN, CAT-αC and CAT-β were expressed in Escherichia coli. Co-immunoprecipitation of the naturally assembled βγ-CAT confirmed that the CAT-α and CAT-β complex always exists. Furthermore, recombinant CAT-β bound recombinant CAT-αN. Ca2+-binding motifs were identified in CAT-αN, and recombinant CAT-αN was able to bind the calcium probe terbium. However, the conformation of CAT-αN was not significantly altered upon Ca2+ binding. βγ-CAT possesses strong hemolytic activity toward human erythrocytes, and treatment of erythrocytes with βγ-CAT resulted in a rapid Ca2+ influx, eventually leading to hemolysis. However, in the absence of extracellular Ca2+, no significant hemolysis was detected, even though the binding and oligomerization of βγ-CAT in the erythrocyte membrane was observed. Our data demonstrate the binding of CAT-β (a trefoil factor) to CAT-αN (βγ-crystallin domains) and provide a basis for the formation of a βγ-crystallin and trefoil factor complex in vivo. Furthermore, the βγ-crystallin domains of βγ-CAT are able to bind Ca2+, and βγ-CAT-induced hemolysis is Ca2+ dependent.  相似文献   

10.
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca2+-binding proteins with huge diversity. The βγ domain shows variable properties in Ca2+ binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily.  相似文献   

11.
Absent in melanoma 2 (AIM2) is a cytoplasmic double-stranded DNA sensor involved in innate immunity. It uses its C-terminal HIN domain for recognizing double-stranded DNA and its N-terminal pyrin domain (PYD) for eliciting downstream effects through recruitment and activation of apoptosis-associated Speck-like protein containing CARD (ASC). ASC in turn recruits caspase-1 and/or caspase-11 to form the AIM2 inflammasome. The activated caspases process proinflammatory cytokines IL-1β and IL-18 and induce the inflammatory form of cell death pyroptosis. Here we show that AIM PYD (AIM2PYD) self-oligomerizes. We notice significant sequence homology of AIM2PYD with the hydrophobic patches of death effector domain (DED)-containing proteins and confirm that mutations on these residues disrupt AIM2PYD self-association. The crystal structure at 1.82 Å resolution of such a mutant, F27G of AIM2PYD, shows the canonical six-helix (H1–H6) bundle fold in the death domain superfamily. In contrast to the wild-type AIM2PYD structure crystallized in fusion with the large maltose-binding protein tag, the H2–H3 region of the AIM2PYD F27G is well defined with low B-factors. Structural analysis shows that the conserved hydrophobic patches engage in a type I interaction that has been observed in DED/DED and other death domain superfamily interactions. While previous mutagenesis studies of PYDs point to the involvement of charged interactions, our results reveal the importance of hydrophobic interactions in the same interfaces. These centrally localized hydrophobic residues within fairly charged patches may form the hot spots in AIM2PYD self-association and may represent a common mode of PYD/PYD interactions in general.  相似文献   

12.

Background

Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily.

Results

Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46) share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism.

Conclusions

The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.  相似文献   

13.
β/γ-Crystallins are predominant structural proteins in the cytoplasm of lens fiber cells and share a similar fold composing of four Greek-key motifs divided into two domains. Numerous cataract-causing mutations have been identified in various β/γ-crystallins, but the mechanisms underlying cataract caused by most mutations remains uncharacterized. The S228P mutation in βB1-crystallin has been linked to autosomal dominant congenital nuclear cataract. Here we found that the S228P mutant was prone to aggregate and degrade in both of the human and E. coli cells. The intracellular S228P aggregates could be redissolved by lanosterol. The S228P mutation modified the refolding pathway of βB1-crystallin by affecting the formation of the dimeric intermediate but not the monomeric intermediate. Compared with native βB1-crystallin, the refolded S228P protein had less packed structures, unquenched Trp fluorophores and increased hydrophobic exposure. The refolded S228P protein was prone to aggregate at the physiological temperature and decreased the protective effect of βB1-crystallin on βA3-crystallin. Molecular dynamic simulation studies indicated that the mutation decreased the subunit binding energy and modified the distribution of surface electrostatic potentials. More importantly, the mutation separated two interacting loops in the C-terminal domain, which shielded the hydrophobic core from solvent in native βB1-crystallin. These two interacting loops are highly conserved in both of the N- and C-terminal domains of all β/γ-crystallins. We propose that these two interacting loops play an important role in the folding and structural stability of β/γ-crystallin domains by protecting the hydrophobic core from solvent access.  相似文献   

14.
The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features—including variations on a dithiol CxxC active site motif—that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif—only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins.  相似文献   

15.
《Journal of molecular biology》2019,431(15):2900-2909
MuRF1 (TRIM63) is a RING-type E3 ubiquitin ligase with a predicted tripartite TRIM fold. TRIM proteins rely upon the correct placement of an N-terminal RING domain, with respect to C-terminal, specific substrate-binding domains. The TRIM domain organization is orchestrated by a central helical domain that forms an antiparallel coiled-coil motif and mediates the dimerization of the fold. MuRF1 has a reduced TRIM composition characterized by a lack of specific substrate binding domains, but contains in its helical domain a conserved sequence motif termed COS-box that has been speculated to fold independently into an α-hairpin. These characteristics had led to question whether MuRF1 adopts a canonical TRIM fold. Using a combination of electron paramagnetic resonance, on spin-labeled protein, and disulfide crosslinking, we show that TRIM63 follows the structural conservation of the TRIM dimerization domain, observed in other proteins. We also show that the COS-box motif folds back onto the dimerization coiled-coil motif, predictably forming a four-helical bundle at the center of the protein and emulating the architecture of canonical TRIMs.  相似文献   

16.
Zhu G  Zhai P  He X  Terzyan S  Zhang R  Joachimiak A  Tang J  Zhang XC 《Biochemistry》2003,42(21):6392-6399
GGAs are a family of vesicle-coating regulatory proteins that function in intracellular protein transport. A GGA molecule contains four domains, each mediating interaction with other proteins in carrying out intracellular transport. The GAT domain of GGAs has been identified as the structural entity that binds membrane-bound ARF, a molecular switch regulating vesicle-coat assembly. It also directly interacts with rabaptin5, an essential component of endosome fusion. A 2.8 A resolution crystal structure of the human GGA1 GAT domain is reported here. The GAT domain contains four helices and has an elongated shape with the longest dimension exceeding 80 A. Its longest helix is involved in two structural motifs: an N-terminal helix-loop-helix motif and a C-terminal three-helix bundle. The N-terminal motif harbors the most conservative amino acid sequence in the GGA GAT domains. Within this conserved region, a cluster of residues previously implicated in ARF binding forms a hydrophobic surface patch, which is likely to be the ARF-binding site. In addition, a structure-based mutagenesis-biochemical analysis demonstrates that the C-terminal three-helix bundle of this GAT domain is responsible for the rabaptin5 binding. These structural characteristics are consistent with a model supporting multiple functional roles for the GAT domain.  相似文献   

17.
MuRF1 is an E3 ubiquitin ligase central to muscle catabolism. It belongs to the TRIM protein family characterized by a tripartite fold of RING, B-box and coiled-coil (CC) motifs, followed by variable C-terminal domains. The CC motif is hypothesized to be responsible for domain organization in the fold as well as for high-order assembly into functional entities. But data on CC from this family that can clarify the structural significance of this motif are scarce. We have characterized the helical region from MuRF1 and show that, contrary to expectations, its CC domain assembles unproductively, being the B2- and COS-boxes in the fold (respectively flanking the CC) that promote a native quaternary structure. In particular, the C-terminal COS-box seemingly forms an α-hairpin that packs against the CC, influencing its dimerization. This shows that a C-terminal variable domain can be tightly integrated within the conserved TRIM fold to modulate its structure and function. Furthermore, data from transfected muscle show that in MuRF1 the COS-box mediates the in vivo targeting of sarcoskeletal structures and points to the pharmacological relevance of the COS domain for treating MuRF1-mediated muscle atrophy.  相似文献   

18.
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain.  相似文献   

19.
Identification of the protein domains that are responsible for RNA recognition has lagged behind the characterization of protein-DNA interactions. However, it is now becoming clear that a range of structural motifs bind to RNA and their structures and molecular mechanisms of action are beginning to be elucidated. In this report, we have expressed and purified one of the two putative RNA-binding domains from ZNF265, a protein that has been shown to bind to the spliceosomal components U1-70K and U2AF35 and to direct alternative splicing. We show that this domain, which contains four highly conserved cysteine residues, forms a stable, monomeric structure upon the addition of 1 molar eq of Zn(II). Determination of the solution structure of this domain reveals a conformation comprising two stacked beta-hairpins oriented at approximately 80 degrees to each other and sandwiching the zinc ion; the fold resembles the zinc ribbon class of zinc-binding domains, although with one less beta-strand than most members of the class. Analysis of the structure reveals a striking resemblance to known RNA-binding motifs in terms of the distribution of key surface residues responsible for making RNA contacts, despite a complete lack of structural homology. Furthermore, we have used an RNA gel shift assay to demonstrate that a single crossed finger domain from ZNF265 is capable of binding to an RNA message. Taken together, these results define a new RNA-binding motif and should provide insight into the functions of the >100 uncharacterized proteins in the sequence data bases that contain this domain.  相似文献   

20.
The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号