共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little is known about the repair of DNA damage resulting from metabolites from PAHs without bay and fjord regions. We have investigated the six-ringed PAH anthanthrene (dibenzo[def,mno]chrysene), which does not posses bay or fjord motifs. We analyzed the repair profile of human cell extracts and of cell cultures in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible for the repair of anthanthrene metabolite-induced DNA damage. However, when the NER pathway was inactivated, a residual repair pathway performed the DNA repair. 相似文献
2.
Kazutsune Yamagata Issay Kitabayashi 《Biochemical and biophysical research communications》2009,390(4):1355-596
Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of γ-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60. 相似文献
3.
Maltseva EA Rechkunova NI Petruseva IO Vermeulen W Schärer OD Lavrik OI 《Bioorganic chemistry》2008,36(2):77-84
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER. 相似文献
4.
5.
Because the molecular mechanisms underlying the development of laryngeal cancer are not well understood, we conducted a case–control study to determine the association between eight common SNPs in NER pathway genes and risk of laryngeal cancer, and the association between genetic polymorphisms and environmental factors. A 1:1 matched case–control study of 176 cases and 176 controls was conducted. Laryngeal cancer cases were more likely to smoke and drink (all P values < 0.05). Subjects with the ERCC1 rs11615 CC genotype and C allele had an increased risk of laryngeal cancer. Similarly, individuals with the ERCC5 rs17655 GG genotype and G allele had an increased risk of laryngeal cancer. Gene–gene interaction analysis showed that subjects carrying ERCC1 rs11615 C allele and XPG/ERCC5 rs17655 G allele had a greatly increased risk of breast cancer. Stratified analysis revealed that the interaction between polymorphisms of ERCC1 rs11615 and ERCC5 rs17655 and smoking on cancer risk was statistically significant, and ERCC1 rs11615 polymorphisms also had a significant interaction with drinking habit. In conclusion, our study suggests that ERCC1 rs11615 and ERCC5 rs17655 polymorphisms are associated with increased risk of laryngeal cancer, and that they confer more risk among smokers and drinkers. 相似文献
6.
Many studies have reported the role of xeroderma pigmentosum group D (XPD) with prostate cancer risk, but the results remained controversial. To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk. A total of 8 studies including 2620 cases and 3225 controls described Asp312Asn genotypes, among which 10 articles involving 3230 cases and 3582 controls described Lys751Gln genotypes and were also involved in this meta-analysis. When all the eligible studies were pooled into this meta-analysis, a significant association between prostate cancer risk and XPD Asp312Asn polymorphism was found. For Asp312Asn polymorphism, in the stratified analysis by ethnicity and source of controls, prostate cancer risk was observed in co-dominant, dominant and recessive models, while no evidence of any associations of XPD Lys751Gln polymorphism with prostate cancer was found in the overall or subgroup analyses. Our meta-analysis supports that the XPD Asp312Asn polymorphism contributed to the risk of prostate cancer from currently available evidence. However, a study with a larger sample size is needed to further evaluate gene–environment interaction on XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk. 相似文献
7.
8.
9.
Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors. 相似文献
10.
The availability of Brugia malayi genome sequence has paved ways for the search of homologues for a variety of genes. Helicases are ubiquitous enzymes involved in all the nucleic acid metabolic pathways and are essential for the development and growth. The genome wide analysis of B. malayi for different helicases showed the presence of a number of DEAD box helicases, 7 DEAH box helicases, RecQ helicases, repair helicases, super killer helicases, MCM2-7 complex, Rad54 and two subunits of Ku helicase. The comparison of protein sequence of each helicase with its human counterpart indicated characteristic differences in filarial helicases. There are noticeable differences in some of the filarial helicases such as DHX35, RecQL1 and Ku. Further characterization of these helicases will help in understanding physiological significance of these helicases in filarial parasites, which in future can be utilized for chemotherapy of parasitic infection. 相似文献
11.
12.
DNA Double-Strand Break Formation upon UV-Induced Replication Stress Activates ATM and DNA-PKcs Kinases 总被引:1,自引:0,他引:1
The phosphatidylinositol 3-kinase-like protein kinases, including ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), are the main kinases activated following various assaults on DNA. Although ATM and DNA-PKcs kinases are activated upon DNA double-strand breaks, evidence suggests that these kinases are rapidly phosphorylated by ATR kinase upon UV irradiation; thus, these kinases may also participate in the response to replication stress. Using UV-induced replication stress, we further characterize whether ATM and DNA-PKcs kinase activities are also involved in the cellular response. Contrary to the rapid activation of the ATR-dependent pathway, ATM-dependent Chk2 and KAP-1 phosphorylations, as well as DNA-PKcs Ser2056 autophosphorylation, reach their peak level at 4 to 8 h after UV irradiation. The delayed kinetics of ATM- and DNA-PKcs-dependent phosphorylations also correlated with a surge in H2AX phosphorylation, suggesting that double-strand break formation resulting from collapse of replication forks is responsible for the activation of ATM and DNA-PKcs kinases. In addition, we observed that some phosphorylation events initiated by ATR kinase in the response to UV were mediated by ATM at a later phase of the response. Furthermore, the S-phase checkpoint after UV irradiation was defective in ATM-deficient cells. These results suggest that the late increase of ATM activity is needed to complement the decreasing ATR activity for maintaining a vigilant checkpoint regulation upon replication stress. 相似文献
13.
Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein 总被引:1,自引:0,他引:1
Charbonnier JB Renaud E Miron S Le Du MH Blouquit Y Duchambon P Christova P Shosheva A Rose T Angulo JF Craescu CT 《Journal of molecular biology》2007,373(4):1032-1046
Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context. 相似文献
14.
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage. 相似文献
15.
16.
Recombinant analogs of spider dragline silk proteins 1F9 and 2E12 are characterized by numerous repeats consisting of hydrophobic poly-Ala blocks and Gly-rich sequences with a substantial number of positively charged amino acid residues which suggest a pronounced ability to interact with negatively charged phospholipid membranes. Actually both proteins displayed substantial binding affinity towards lipid vesicles formed of acidic lipids as measured by fluorescence correlation spectroscopy (FCS) using rhodamine-labeled conjugates of the proteins. Both proteins did not induce liposome leakage, fusion or breakdown, but were able to bring about liposome aggregation. 1F9 was more active in the induction of liposome aggregation compared to 2E12. Interestingly, 2E12 markedly decreased the rate of calcium-induced liposome fusion. Circular dichroism data showed that binding of the proteins to negatively charged phosphatidylserine liposomes provoked transition from the left-handed helix of polyproline II (PPII) type to β-structures and α-helices. The data suggested predominantly surface location of membrane bound proteins without significant perturbation of their hydrophobic core. 相似文献
17.
Genetic polymorphisms in excision repair cross-complementing group 4 (ERCC4) may contribute to the risk of cancer development. However, there are few reports regarding to susceptibility to gastric cancer (GC) or its precursor, atrophic gastritis (AG). Thereby, we investigated the association between two tag single nucleotide polymorphisms (tagSNPs) rs6498486 and rs254942, which represents the majority of common SNPs of ERCC4 gene, and the risks of GC and AG development in a sex- and age-matched case–control designed study. We found that rs6498486 polymorphism was associated with a reduced AG risk in total population (for AC vs. AA: OR = 0.69, 95%CI = 0.52–0.94, P = 0.016; for AC/CC vs. AA: OR = 0.68, 95%CI = 0.51–0.92, P = 0.010) as well as in the subpopulation of youngers (age < 60 years) (for AC/CC vs. AA: OR = 0.67, 95%CI = 0.45–0.99, P = 0.048). For the rs254942 polymorphism, compared with the common TT genotype, the genotypes of CT and CT/CC were only observed to reduce AG risk in the subgroups of males (for CT vs. TT: OR = 0.64, 95%CI = 0.45–0.90, P = 0.012; for CT/CC vs. TT: OR = 0.66, 95%CI = 0.47–0.92, P = 0.016) and youngers (for CT vs. TT: OR = 0.72, 95%CI = 0.53–0.97, P = 0.035; for CT/CC vs. TT: OR = 0.74, 95%CI = 0.55–0.99, P = 0.045). However, no significant statistical association of the two SNPs with GC susceptibility was observed in the total population. Only rs6498486 AC and AC/CC genotypes were found to be marginally associated with a reduced GC risk in the subgroup of males (for AC vs. AA: OR = 0.69, 95%CI = 0.49–0.99, P = 0.043; for AC/CC vs. AA: OR = 0.71, 95%CI = 0.50–0.99, P = 0.046). Our findings suggested that the ERCC4 rs6498486 and rs254942 may be associated with AG risk. Further validation of our results in larger populations and additional studies evaluating their molecular function are required. 相似文献
18.
Juan Martinez-Sanz Fatiha Kateb Yves Blouquit Geoffrey Bodenhausen Liliane Mouawad Constantin T. Craescu 《Journal of molecular biology》2010,395(1):191-6422
Centrin, an EF-hand calcium-binding protein, has been shown to be involved in the duplication of centrosomes, and Sfi1 (Suppressor of fermentation-induced loss of stress resistance protein 1) is one of its centrosomal targets. There are three isoforms of human centrin, but here we only considered centrin 2 (HsCen2). This protein has the ability to bind to any of the ∼ 25 repeats of human Sfi1 (hSfi1) with more or less affinity. In this study, we mainly focused on the 17th repeat (R17-hSfi1-20), which presents the highest level of similarity with a well-studied 17-residue peptide (P17-XPC) from human xeroderma pigmentosum complementation group C protein, another centrin target for DNA repair. The only known structure of HsCen2 was resolved in complex with P17-XPC. The 20-residue peptide R17-hSfi1-20 exhibits the motif L8L4W1, which is the reverse of the XPC motif, W1L4L8. Consequently, the dipole of the helix formed by this motif has a reverse orientation. We wished to ascertain the impact of this reversal on the structure, dynamics and affinity of centrin. To address this question, we determined the structure of C-HsCen2 [the C-terminal domain of HsCen2 (T94-Y172)] in complex with R17-hSfi1-20 and monitored its dynamics by NMR, after having verified that the N-terminal domain of HsCen2 does not interact with the peptide. The structure shows that the binding mode is similar to that of P17-XPC. However, we observed a 2 -Å translation of the R17-hSfi1-20 helix along its axis, inducing less anchorage in the protein and the disruption of a hydrogen bond between a tryptophan residue in the peptide and a well-conserved nearby glutamate in C-HsCen2. NMR dynamic studies of the complex strongly suggested the existence of an unusual calcium secondary binding mode in calcium-binding loop III, made possible by the uncommon residue composition of this loop. The secondary metal site is only populated at high calcium concentration and depends on the type of bound ligand. 相似文献
19.
Gurudutta GU Verma YK Singh VK Gupta P Raj HG Sharma RK Chandra R 《FEBS letters》2005,579(17):3503-3507
The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2. 相似文献
20.
Jarmila Mlcouskova Jaroslav Malina Vojtech Novohradsky Jana Kasparkova Seiji Komeda Viktor Brabec 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012