首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nucleosome-remodelling factors containing the ATPase ISWI, such as ACF, render DNA in chromatin accessible by promoting the sliding of histone octamers. Although the ATP-dependent repositioning of mononucleosomes is readily observable in vitro, it is unclear to which extent nucleosomes can be moved in physiological chromatin, where neighbouring nucleosomes, linker histones and the folding of the nucleosomal array restrict mobility. We assembled arrays consisting of 12 nucleosomes or 12 chromatosomes (nucleosomes plus linker histone) from defined components and subjected them to remodelling by ACF or the ATPase CHD1. Both factors increased the access to DNA in nucleosome arrays. ACF, but not CHD1, catalysed profound movements of nucleosomes throughout the array, suggesting different remodelling mechanisms. Linker histones inhibited remodelling by CHD1. Surprisingly, ACF catalysed significant repositioning of entire chromatosomes in chromatin containing saturating levels of linker histone H1. H1 inhibited the ATP-dependent generation of DNA accessibility by only about 50%. This first demonstration of catalysed chromatosome movements suggests that the bulk of interphase euchromatin may be rendered dynamic by dedicated nucleosome-remodelling factors.  相似文献   

2.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

3.
4.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   

5.
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.  相似文献   

6.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   

7.
We have previously shown that nucleosomes are conformationally dynamic: DNA sequences that in the time-average are buried inside nucleosomes are nevertheless transiently accessible, even to large proteins (or any other macromolecule). We refer to this dynamic behavior as "site exposure". Here we show that: (i) the equilibrium constants describing this dynamic site exposure decrease progressively from either end of the nucleosomal DNA in toward the middle; and (ii) these position-dependent equilibrium constants are strongly dependent on the nucleosomal DNA sequence. The progressive decrease in equilibrium constant with distance inside the nucleosome supports the hypothesis that access to sites internal to a nucleosome is provided by progressive (transient) release of DNA from the octamer surface, starting from one end of the nucleosomal DNA. The dependence on genomic DNA sequence implies that a specific genomic DNA sequence could be a major determinant of target site occupancies achieved by regulatory proteins in vivo, by either governing the time-averaged accessibility for a given nucleosome position, or biasing the time-averaged positioning (of mobile nucleosomes), which in turn is a major determinant of site accessibility.  相似文献   

8.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

9.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

10.
11.
12.
13.
Studies on the stability of nucleosome core particles as a function of concentration have indicated a lower limit of ∼5 ng/μL, below which the complexes start to spontaneously destabilize. Until recently little information was available on the effect of low concentration on chromatin. Using the well-characterized array of tandemly repeated 5S rDNA reconstituted into chromatin, we have investigated the effect of dilution. In this study, we demonstrate that the stability of saturated nucleosomal arrays and that of nucleosome core particles are within the same order of magnitude, and no significant loss of histones is monitored down to a concentration of 2.5 ng/μL. We observed that levels of subsaturation of the nucleosomal arrays were directly correlated with an increased sensitivity to histone loss, suggesting a shielding effect. The loss of histones from our linear nucleosomal arrays was shown not to be random, with a significant likelihood to occur at the end of the template than toward the center. This observation indicates that centrally located nucleosomes are more stable than those close to the end of the DNA templates. Itis important to take this information into account for the proper design of experiments pertaining to histone composition and the folding ability of chromatin samples.  相似文献   

14.
The accessibility of DNA in nucleosome dimers (as a model of the chromosomal chain of nucleosomes) was determined by means of modification methylases from Haemophilus influenzae Rd. Using these enzymes, the rate of modification of nucleosome dimers is about one fifth the rate observed with protein-free DNA from chromatin subunit dimers. Methylated DNA sites in nucleosome dimers are readily accessible to micrococcal nuclease. The analysis of the fragment pattern of nucleosomes after methylation and mild nuclease treatment reveals that the methylated sites are predominantly located in the internucleosomal linker DNA. Polylysine binding experiments further support this interpretation. This compound preferentially interacts with the nucleosomal core DNA and protects it against internal cleavage. It neither affects the degradation of methylated sites drastically nor does it inhibit the methylation of nucleosome dimers. Thus, a combination of protection, cleavage and modification is proposed as a useful tool for the analysis of the structure of chromatin.  相似文献   

15.
16.
17.
18.
19.
Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays.  相似文献   

20.
Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号