首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cdk inhibitor p57kip2, encoded by the Cdkn1c gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to Cdkn1c silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of Cdkn1c expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of Cdkn1c. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to Cdkn1c induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and Cdkn1c promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of Cdkn1c promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which Cdkn1c is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of Cdkn1c and, possibly, of its aberrant silencing in some pathological conditions.  相似文献   

3.
We report that cyclin D3/cdk4 kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. The association of p27kip1 was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27kip1/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27kip1-specific antibodies. The association of p27kip1 with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27kip1 protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27kip1 kinase activity was present throughout the cell cycle. Since we found that the p27kip1 activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27kip1 and the active cyclin D3 lacking p27kip1 by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27kip1/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27kip1 has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.  相似文献   

4.
The myogenic factor MyoD induces the expression of the cdk inhibitor p21 to promote cell cycle withdrawal in differentiating myoblasts. Although the cdk inhibitor p57 is also highly expressed in skeletal muscle and is thought to redundantly control myogenesis, little is known about its regulation, that has been suggested to be independent of MyoD. Here we show, for the first time, that MyoD is capable to induce the expression of p57. Intriguingly, this ability is restricted to cells lacking p21, suggesting that the two cdk inhibitors may be expressed in different muscle cell lineages. We also suggest that the functions of p21 and p57 in myoblast cells are only in part redundant. In fact, while the two cdk inhibitors play a similar role in cells undergoing G1 arrest during MyoD-induced differentiation, p57 does not replace p21 in cells escaping G1 arrest and undergoing MyoD-induced apoptosis. This difference can be ascribed both to a different subcellular localization and to a differential ability of the two cdk inhibitors to interact with cell cycle regulators.  相似文献   

5.
6.
7.
8.
Sea urchins provide an excellent model for studying cell cycle control mechanisms governing DNA replication in vivo. Fertilization and cell cycle progression are tightly coordinated by Ca2+ signals, but the mechanisms underlying the onset of DNA replication after fertilization remain less clear. In this study we demonstrate that calcium-dependent activation of ERK1 promotes accumulation of cyclinE/cdk2 into the male and female pronucleus and entry into first S-phase. We show that cdk2 activity rises quickly after fertilization to a maximum at 4 min, corresponding in timing to the early ERK1 activity peak. Abolishing MAP kinase activity after fertilization with MEK inhibitor, U0126, substantially reduces the early peak of cdk2 activity and prevents cyclinE and cdk2 accumulation in both sperm pronucleus and zygote nucleus in vivo. Both p27kip1 and roscovitine, cdk2 inhibitors, prevented DNA replication suggesting cdk2 involvement in this process in sea urchin. Inhibition of cdk2 activity using p27kip1 had no effect on the phosphorylation of MBP by ERK, but completely abolished phosphorylation of retinoblastoma protein, a cdk2 substrate, indicating that cdk2 activity is downstream of ERK1 activation. This pattern of regulation of DNA synthesis conforms to the pattern observed in mammalian somatic cells.  相似文献   

9.
10.
The cyclin/cyclin-dependent kinase (cdk) inhibitor p27(kip1) is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27(kip1) in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27(kip1) on cell cycle traverse is determined by cell density. We found that ectopic expression of p27(kip1) blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27(kip1) expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27(kip1) but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27(kip1)-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures.  相似文献   

11.
12.
The members of Rho family are well known for their regulation of actin cytoskeleton to control cell migration. The Cip/kip members of cyclin‐dependent (CDK) inhibitors have shown to implicate in cell migration and cytoskeletal dynamics. p57kip2, a CDK inhibitor, is frequently down‐regulated in several malignancy tumors. However, its biological roles in human nasopharyngeal carcinoma (NPC) cells remained to be investigated. Here, we found p57kip2 has nuclear and cytoplasm distributions and depletion of endogenous p57kip2 did not change the cell‐cycle progression. Inhibition of cell proliferation by mitomycin C promoted FBS‐mediated cell migration and accompanied with the downregulation of ΔNp63α and p57kip2, but did not change the level of p27kip1, another CDK inhibitor. By using siRNA transfection and cell migration/invasion assays, we found that knockdown of p57kip2, but not ΔNp63α, involved in promotion of NPC cell migration and invasion via decrease of phospho‐cofilin (p‐cofilin). Treatment with Y‐27632, a specific ROCK inhibitor, we found that dysregulation of ROCK/cofilin pathway decreased p‐cofilin expression and induced cell migration. This change of p‐cofilin induced actin remodeling and pronounced increase of membrane protrusions. Further, silence of p57kip2 not only decreased the interaction between p57kip2 and LIMK‐1 assayed by immunoprecipitation but also reduced the level of phospho‐LIMK1/2. Therefore, this study indicated that dysregulation of p57kip2 promoted cell migration and invasion through modulation of LIMK/cofilin signaling and suggested this induction of inappropriate cell motility might contribute to promoting tumor cell for metastasis. J. Cell. Biochem. 112: 3459–3468, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

14.
15.
Zhang JM  Zhao X  Wei Q  Paterson BM 《The EMBO journal》1999,18(24):6983-6993
MyoD has been proposed to facilitate terminal myoblast differentiation by binding to and inhibiting phosphorylation of the retinoblastoma protein (pRb). Here we show that MyoD can interact with cyclin-dependent kinase 4 (cdk4) through a conserved 15 amino acid (aa) domain in the C-terminus of MyoD. MyoD, its C-terminus lacking the basic helix-loop-helix (bHLH) domain, or the 15 aa cdk4-binding domain all inhibit the cdk4-dependent phosphorylation of pRb in vitro. Cellular expression of full-length MyoD or fusion proteins containing either the C-terminus or just the 15 aa cdk4-binding domain of MyoD inhibit cell growth and pRb phosphorylation in vivo. The minimal cdk4-binding domain of MyoD fused to GFP can also induce differentiation of C2C12 muscle cells in growth medium. The defective myogenic phenotype in MyoD-negative BC3H1 cells can be rescued completely only when MyoD contains the cdk4-binding domain. We propose that a regulatory checkpoint in the terminal cell cycle arrest of the myoblast during differentiation involves the modulation of the cyclin D cdk-dependent phosphorylation of pRb through the opposing effects of cyclin D1 and MyoD.  相似文献   

16.
17.
18.
Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.  相似文献   

19.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号