首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Butanedione in the presence of borate buffer reversibly inhibits Rhodospirillum rubrum chromatophore transhydrogenase complex and the separated membrane-bound and soluble factor components of the complex. NADP+ completely protected against inactivation of the membrane-bound component, whereas NAD+ was without effect. Soluble factor was maximally protected only partially by either NAD+ or NADP+, but a mixture of the substrates afforded complete protection. NADP+-dependent association of soluble factor with factor-depleted membranes was markedly decreased after incubation of membranes with butanedione in the absence, but not in the presence, of NADP+. Soluble factor was bound to agarose-NAD and was eluted by NAD+, but not by NADP+. These results demonstrate the presence of at least three nicotinamide adenine dinucleotide binding sites on R. rubrum transhydrogenase complex, including separate NADP and NAD binding sites on soluble factor and a NADP binding site on the membrane-bound component.  相似文献   

3.
4.
The cofactor-binding site of the NAD+-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2′- and 3′-hydroxyl groups of the adenosyl ribose ring of NAD+ and repels the 2′-phosphate moiety of NADP+. If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD+ is altered and rendered the enzyme capable of using NADP+. This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2′-phosphate of NADP+. Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP+. The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP+. Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a “closed” cofactor binding site. The cofactor specificity was shifted even further in favor of NADP+, as the mutant ALDH3H1E149T/V178R/I200V uses NADP+ with almost 7-fold higher catalytic efficiency compared to NAD+. Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.  相似文献   

5.
6.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

7.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo‐ and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′‐phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity toward NADP+ by 10‐fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide‐hydroxyl ion (NAD+‐OH?) adduct contraposing previously reported adducts. The OH? of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′‐hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD+‐OH? adduct in proton relay instead of hydride transfer as noted for previous adducts. Proteins 2014; 82:216–229. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
NAD+ and NADP+, chemically similar and with almost identical standard oxidation–reduction potentials, nevertheless have distinct roles, NAD+ serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD+-dependent for glutamate oxidation, NADP+-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD+ reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD+ but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP+ reduction by NADH, maintaining the coenzyme pools at different oxidation–reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD+-dependent, NADP+-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD+ or for NADP+ has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2′- and 3′-hydroxyls, dictating NAD+ specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD+ only, NADP+ only, or in higher animals both.  相似文献   

9.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure.  相似文献   

10.
Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2''-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2 loops, play a role in determining cofactor preference.  相似文献   

11.
12.
The activity of pure calf-liver and Escherichia coli thioredoxin reductases decreased drastically in the presence of NADPH or NADH, while NADP+, NAD+ and oxidized E. coli thioredoxin activated both enzymes significantly, particularly the bacterial one. The loss of activity under reducing conditions was time-dependent, thus suggesting an inactivation process: in the presence of 0.24 mM NADPH the half-lives for the E. coli and calf-liver enzymes were 13.5 and 2 min, respectively. Oxidized E. coli thioredoxin fully protected both enzymes from inactivation, and also promoted their complete reactivation after only 30 min incubation at 30° C. Lower but significant protection and reactivation was also observed with NADP+ and NAD+. EDTA protected thioredoxin reductase from NADPH inactivation to a great degree, thus indicating the participation of metals in the process; EGTA did not protect the enzyme from redox inactivation. Thioredoxin reductase was extensively inactivated by NADPH under aerobic and anaerobic conditions, thus excluding the participation of O2 or oxygen active species in redox inactivation. The loss of thioredoxin reductase activity promoted by NADPH was much faster and complete in the presence of NAD+ glycohydrolase, thus suggesting that inactivation was related to full reduction of the redox-active disulfide. Those results indicate that thioredoxin reductase activity can be modulated in bacteria and mammals by the redox status of NADP(H) and thioredoxin pools, in a similar way to glutathione reductase. This would considerably expand the regulatory potential of the thioredoxin-thioredoxin reductase system with the enzyme being self-regulated by its own substrate, a regulatory protein.Abbreviations DTNB 5,5-dithiobis(2-nitrobenzoate) - EGTA Ethylenglycoltetraacetic Acid - TNB 5-thio-2-nitrobenzoate - Trx Thioredoxin - Trx(SH)2 Reduced Thioredoxin - Trx-S2 Oxidized Thioredoxin  相似文献   

13.
14.
15.
Saccharopine [?-N-(l-glutaryl-2)-l-lysine] has been found to occur in normal, untreated mouse liver. The pool of saccharopine as well as that of α-aminoadipate become labeled shortly after the administration of l-lysine-U-14C into intact mouse. In vitro experiments using the mouse liver homogenate have shown that l-lysine is converted to saccharopine in the presence of α-ketoglutarate and NADPH, and saccharopine to α-aminoadipate in the presence of NAD+. The oxidation of α-aminoadipic-δ-semialdehyde (Δ1-piperideine-6-carboxylate), the proposed reaction product of saccharopine cleavage, to α-aminoadipate is effected by either NAD+ or NADP+.  相似文献   

16.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.  相似文献   

17.
18.
Isocitrate dehydrogenase (IDH) activities were measured in mitochondria isolated from aerial parts of 21-day-old spruce (Picea abies L. Karst.) seedlings. Mitochondria were purified by two methods, involving continuous and discontinuous Percoll gradients. Whatever the method of purification, the mitochondrial outer membrane was about 69% intact, and the mitochondria contained very low cytosolic, chloroplastic and peroxisomal contaminations. Nevertheless, as judged by the recovery of fumarase activity, purification on a continuous 28% Percoll gradient gave the best yield in mitochondria, which exhibited a high degree of inner membrane intactness (91%). The purified mitochondria oxidized succinate and malate with good respiratory control and ADP/O ratios. The highest oxidation rate was obtained with succinate as substrate, and malate oxidation was improved (+ 60%) by addition of exogenous NAD+. Experiments using standard respiratory chain inhibitors indicated that, in spruce mitochondria, the alternative pathway was present. Both NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and NADP+-isocitrate dehydrogenase (EC 1.1.1.42) were present in the mitochondrial matrix fraction, and NAD+-IDH activity was about 2-fold higher than NADP+-IDH activity. The NAD+-IDH showed sigmoidal kinetics in response to isocitrate and standard Michaelis-Menten kinetics for NAD+ and Mg2+. The NADP+-IDH, in contrast, displayed lower Km values. For NAD+-IDH the pH optimum was at 7.4, whereas NADP+-IDH exhibited a broad pH optimum between 8.3 and 9. In addition, NAD+-IDH was more thermolabile. Adenine nucleotides and 2-oxoglutarate were found to inhibit NAD(P)+-IDH activities only at high concentrations.  相似文献   

19.
Mitochondria from the parasitic helminth, Hymenolepis diminuta, catalyzed both NADPH:NAD+ and NADH:NADP+ transhydrogenase reactions which were demonstrable employing the appropriate acetylpyridine nucleotide derivative as the hydride ion acceptor. Thionicotinamide NAD+ would not serve as the oxidant in the former reaction. Under the assay conditions employed, neither reaction was energy linked, and the NADPH:NAD+ system was approximately five times more active than the NADH:NADP+ system. The NADH:NADP+ reaction was inhibited by phosphate and imidazole buffers, EDTA, and adenyl nucleotides, while the NADPH:NAD+ reaction was inhibited only slightly by imidazole and unaffected by EDTA and adenyl nucleotides. Enzyme coupling techniques revealed that both transhydrogenase systems functioned when the appropriate physiological pyridine nucleotide was the hydride ion acceptor. An NADH:NAD+ transhydrogenase system, which was unaffected by EDTA, or adenyl nucleotides, also was demonstrable in the mitochondria of H. diminuta. Saturation kinetics indicated that the NADH:NAD+ reaction was the product of an independent enzyme system. Mitochondria derived from another parasitic helminth, Ascaris lumbricoides, catalyzed only a single transhydrogenase reaction, i.e., the NADH:NAD+ activity. Transhydrogenase systems from both parasites were essentially membrane bound and localized on the inner mitochondrial membrane. Physiologically, the NADPH:NAD+ transhydrogenase of H. diminuta may serve to couple the intramitochondrial metabolism of malate (via an NADP linked “malic” enzyme) to the anaerobic NADH-dependent ATP-generating fumarate reductase system. In A. lumbricoides, where the intramitochondrial metabolism of malate depends on an NAD-linked “malic” enzyme which is localized primarily in the intermembrane space, the NADH:NAD+ transhydrogenase activity may serve physiologically in the translocation of hydride ions across the inner membrane to the anaerobic energy-generating fumarate reductase system.  相似文献   

20.
There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号