首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.  相似文献   

2.
Beta-lactams exert their antibiotic action through their inhibition of bacterial DD-peptidases (penicillin-binding proteins). Bacteria, in general, carry several such enzymes localized on the outside of their cell membrane to catalyze the final step in cell wall (peptidoglycan) synthesis. They have been classified into two major groups, one of high molecular weight, the other of low. Members of the former group act as transpeptidases in vivo, and their inhibition by beta-lactams leads to cessation of bacterial growth. The latter group consists of DD-carboxypeptidases, and their inhibition by beta-lactams is generally not fatal to bacteria. We have previously shown that representatives of the former group are ineffective at catalyzing the hydrolysis/aminolysis of peptidoglycan-mimetic peptides in vitro [Anderson et al. (2003) Biochem. J. 373, 949-955]. The theme of these experiments is expanded in the present paper where we describe the synthesis of a series of beta-lactams (penicillins and cephalosporins) containing peptidoglycan-mimetic side chains and the kinetics of their inhibition of a panel of penicillin-binding proteins spanning the major classes (Escherichia coli PBP 2 and PBP 5, Streptococcus pneumoniae PBP 1b, PBP 2x and PBP 3, the Actinomadura R39 DD-peptidase, and the Streptomyces R61 DD-peptidase). The results of these experiments mirror and expand the previous results with peptides. Neither peptides nor beta-lactams with appropriate peptidoglycan-mimetic side chains react with the solubilized constructs of membrane-bound penicillin binding proteins (the first five enzymes above) at rates exceeding those of generic analogues. Such peptides and beta-lactams do react at greatly enhanced rates with certain soluble low molecular weight enzymes (R61 and R39 DD-peptidases). The former result is unexpected and interesting. Why do the majority of penicillin-binding proteins not recognize elements of local peptidoglycan structure? Possible answers are discussed. That this question needs to be asked casts fascinating shadows on current studies of penicillin-binding proteins for new drug design.  相似文献   

3.
Dzhekieva L  Kumar I  Pratt RF 《Biochemistry》2012,51(13):2804-2811
The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) < 1 mM) to the low-molecular mass PBPs but not to the high-molecular mass enzymes, both in membrane preparations and in whole cells. In two cases, E. coli PBP2 and PBP5, the dissociation constants obtained were very similar to those obtained with the pure enzymes in homogeneous solution. The boronic acids, therefore, are unable to induce tightly binding conformations of these enzymes in vivo. There is no evidence from these experiments that DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.  相似文献   

4.
We report the first crystal structures of a penicillin-binding protein (PBP), PBP3, from Pseudomonas aeruginosa in native form and covalently linked to two important β-lactam antibiotics, carbenicillin and ceftazidime. Overall, the structures of apo and acyl complexes are very similar; however, variations in the orientation of the amino-terminal membrane-proximal domain relative to that of the carboxy-terminal transpeptidase domain indicate interdomain flexibility. Binding of either carbenicillin or ceftazidime to purified PBP3 increases the thermostability of the enzyme significantly and is associated with local conformational changes, which lead to a narrowing of the substrate-binding cleft. The orientations of the two β-lactams in the active site and the key interactions formed between the ligands and PBP3 are similar despite differences in the two drugs, indicating a degree of flexibility in the binding site. The conserved binding mode of β-lactam-based inhibitors appears to extend to other PBPs, as suggested by a comparison of the PBP3/ceftazidime complex and the Escherichia coli PBP1b/ceftoxamine complex. Since P. aeruginosa is an important human pathogen, the structural data reveal the mode of action of the frontline antibiotic ceftazidime at the molecular level. Improved drugs to combat infections by P. aeruginosa and related Gram-negative bacteria are sought and our study provides templates to assist that process and allows us to discuss new ways of inhibiting PBPs.  相似文献   

5.
The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.  相似文献   

6.
We have determined high-resolution apo crystal structures of two low molecular weight penicillin-binding proteins (PBPs), PBP4 and PBP5, from Haemophilus influenzae, one of the most frequently found pathogens in the upper respiratory tract of children. Novel β-lactams with notable antimicrobial activity have been designed, and crystal structures of PBP4 complexed with ampicillin and two of the novel molecules have also been determined. Comparing the apo form with those of the complexes, we find that the drugs disturb the PBP4 structure and weaken X-ray diffraction, to very different extents. PBP4 has recently been shown to act as a sensor of the presence of penicillins in Pseudomonas aeruginosa, and our models offer a clue to the structural basis for this effect. Covalently attached penicillins press against a phenylalanine residue near the active site and disturb the deacylation step. The ready inhibition of PBP4 by β-lactams compared to PBP5 also appears to be related to the weaker interactions holding key residues in a catalytically competent position.  相似文献   

7.
The pneumococcus is an important Gram-positive pathogen, which shows increasing resistance to antibiotics, including β-lactams that target peptidoglycan assembly. Understanding cell-wall synthesis, at the molecular and cellular level, is essential for the prospect of combating drug resistance. As a first step towards reconstituting pneumococcal cell-wall assembly in vitro, we present the characterization of the glycosyltransferase activity of penicillin-binding protein (PBP)2a from Streptococcus pneumoniae. Recombinant full-length membrane-anchored PBP2a was purified by ion-exchange chromatography. The glycosyltransferase activity of this enzyme was found to differ from that of a truncated periplasmic form. The full-length protein with its cytoplasmic and transmembrane segment synthesizes longer glycan chains than the shorter form. The transpeptidase active site was functional, as shown by its reactivity towards bocillin and the catalysis of the hydrolysis of a thiol-ester substrate analogue. However, PBP2a did not cross-link the peptide stems of glycan chains in vitro. The absence of transpeptidase activity indicates that an essential component is missing from the in vitro system.  相似文献   

8.
Class A penicillin-binding proteins (PBPs) catalyze the last two steps in the biosynthesis of peptidoglycan, a key component of the bacterial cell wall. Both reactions, glycosyl transfer (polymerization of glycan chains) and transpeptidation (cross-linking of stem peptides), are essential for peptidoglycan stability and for the cell division process, but remain poorly understood. The PBP-catalyzed transpeptidation reaction is the target of β-lactam antibiotics, but their vast employment worldwide has prompted the appearance of highly resistant strains, thus requiring concerted efforts towards an understanding of the transpeptidation reaction with the goal of developing better antibacterials. This goal, however, has been elusive, since PBP substrates are rapidly deacylated. In this work, we provide a structural snapshot of a “trapped” covalent intermediate of the reaction between a class A PBP with a pseudo-substrate, N-benzoyl-d-alanylmercaptoacetic acid thioester, which partly mimics the stem peptides contained within the natural, membrane-associated substrate, lipid II. The structure reveals that the d-alanyl moiety of the covalent intermediate (N-benzoyl-d-alanine) is stabilized in the cleft by a network of hydrogen bonds that place the carbonyl group in close proximity to the oxyanion hole, thus mimicking the spatial arrangement of β-lactam antibiotics within the PBP active site. This arrangement allows the target bond to be in optimal position for attack by the acceptor peptide and is similar to the structural disposition of β-lactam antibiotics with PBP clefts. This information yields a better understanding of PBP catalysis and could provide key insights into the design of novel PBP inhibitors.  相似文献   

9.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

10.
High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37–43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.  相似文献   

11.
A combinatorial library approach was used to produce synthetic peptides mimicking the snake neurotoxin binding site of nicotinic receptors. Among the sequences, which inhibited binding of alpha-bungarotoxin to muscle and neuronal nicotinic receptors, HRYYESSLPWYPD, a 14-amino acid peptide with considerably higher toxin-binding affinity than the other synthesized peptides, was selected, and the structure of its complex with the toxin was analyzed by NMR. Comparison of the solution structure of the free toxin and its complex with this peptide indicated that complex formation induced extensive conformational rearrangements mainly at finger II and the carboxy terminus of the protein. The peptidyl residues P10 and Y4 seemed to be critical for peptide folding and complex stability, respectively. The latter residue of the peptide strongly interacted with the protein by entering a small pocket delimited by D30, C33, S34, R36, and V39 toxin side chains.  相似文献   

12.
High-molecular-mass penicillin-binding proteins (HMM PBPs) are essential for bacterial cell wall biosynthesis and are the lethal targets of β-lactam antibiotics. When purified, HMM PBPs give undetectable or weak enzyme activity. This has impeded efforts to develop assays for HMM PBPs and to develop new inhibitors for HMM PBPs as HMM PBP targeted antibacterial agents. However, even when purified, HMM PBPs retain their ability to bind β-lactams. Here we describe a fluorescently detected microtiter plate-based assay for inhibitor binding to HMM PBPs based on competition with biotin-ampicillin conjugate (BIO-AMP) binding.  相似文献   

13.
The high-resolution structure of bovine trypsin inhibited with DFP2 was determined by Stroud et al. (1971 and R. M. Stroud, L. M. Kay, A. Cooper &; R. E. Dickerson, Abstr. 8th Int. Congr. Biochem. 1970). The experiments reported here were designed to study the specific side-chain binding pocket of trypsin using benzamidine, which is a competitive, specific inhibitor of trypsin. High-resolution electron density syntheses and difference syntheses unambiguously identify the side-chain binding pocket, which normally recognizes and binds the side chains of arginine or lysine during proteolysis. Several important conformational differences in the protein structure are apparent between DIP- and BA-trypsins, and these are discussed with particular reference to inhibition, the binding of lysine and arginine, subsequent orientation of the target at the active site, and the enhancement of tryptic activity towards non-specific substrates seen on binding small alkyl amines or guanidines in the specific binding pocket.The BA-trypsin structure provides a good model for the binding of real substrate side chains to trypsin during catalysis, explaining the sharp trypsin specificity for lysine or arginine side chains (Weinstein &; Doolittle, 1972) and the lack of specificity for stereochemically different basic side chains. Benzamidine is shown to inhibit trypsin by steric interference with the inferred position of good substrates, even when they do not carry any side chain.Apart from the substitution of benzamidine and DIP, the most significant differences between DIP-trypsin and BA-trypsin involve complete repositioning of the side chain of Gln192, alterations in the side chains of Asp102, His57 and Ser195 at the active site, and changes in the solvent structure around this region. The carboxyl group of Asp189, which is responsible for trypsin specificity, shows no movement on binding benzamidine. The amidinium cation of benzamidine forms a salt bridge with Asp189 in BA-trypsin; a similar salt bridge can be constructed between the side chains of model substrates with lysyl or arginyl side chains and Aspl89. The γ-oxygen of Ser190 is displaced by a 120 ° rotation about its αβ bond on binding benzamidine and the binding pocket closes to sandwich the inhibitor ring between the peptide planes of 190–191 and 215–216. These contacts are presumably found in the enzyme-substrate complex with specific substrates.The active site structure at pH 8.0 is discussed with particular reference to the microscopic pKa values of Asp102 and His57, the pKa of the Asp-His system, and the mechanistic consequences of these assignments.  相似文献   

14.
The mechanism of the 3'-5' exonuclease activity of the Klenow fragment of DNA polymerase I has been investigated with a combination of biochemical and spectroscopic techniques. Site-directed mutagenesis was used to make alanine substitutions of side chains that interact with the DNA substrate on the 5' side of the scissile phosphodiester bond. Kinetic parameters for 3'-5' exonuclease cleavage of single- and double-stranded DNA substrates were determined for each mutant protein in order to probe the role of the selected side chains in the exonuclease reaction. The results indicate that side chains that interact with the penultimate nucleotide (Q419, N420, and Y423) are important for anchoring the DNA substrate at the active site or ensuring proper geometry of the scissile phosphate. In contrast, side chains that interact with the third nucleotide from the DNA terminus (K422 and R455) do not participate directly in exonuclease cleavage of single-stranded DNA. Alanine substitutions of Q419, Y423, and R455 have markedly different effects on the cleavage of single- and double-stranded DNA, causing a much greater loss of activity in the case of a duplex substrate. Time-resolved fluorescence anisotropy decay measurements with a dansyl-labeled primer/template indicate that the Q419A, Y423A, and R455A mutations disrupted the ability of the Klenow fragment to melt duplex DNA and bind the frayed terminus at the exonuclease site. In contrast, the N420A mutation stabilized binding of a duplex terminus to the exonuclease site, suggesting that the N420 side chain facilitates the 3'-5' exonuclease reaction by introducing strain into the bound DNA substrate. Together, these results demonstrate that protein side chains that interact with the second or third nucleotides from the terminus can participate in both the chemical step of the exonuclease reaction, by anchoring the substrate in the active site or by ensuring proper geometry of the scissile phosphate, and in the prechemical steps of double-stranded DNA hydrolysis, by facilitating duplex melting.  相似文献   

15.
Penicillin-binding proteins (PBPs), the main targets of β-lactam antibiotics, are membrane-associated enzymes that catalyze the two last steps in the biosynthesis of peptidoglycan. In Streptococcus pneumoniae, a major human pathogen, the surge in resistance to such antibiotics is a direct consequence of the proliferation of mosaic PBP-encoding genes, which give rise to proteins containing tens of mutations. PBP2b is a major drug resistance target, and its modification is essential for the development of high levels of resistance to piperacillin. In this work, we have solved the crystal structures of PBP2b from a wild-type pneumococcal strain, as well as from a highly drug-resistant clinical isolate displaying 58 mutations. Although mutations are present throughout the entire PBP structure, those surrounding the active site influence the total charge and the polar character of the region, while those in close proximity to the catalytic nucleophile impart flexibility onto the β3/β4 loop area, which encapsulates the cleft. The wealth of structural data on pneumococcal PBPs now underlines the importance of high malleability in active site regions of drug-resistant strains, suggesting that active site “breathing” could be a common mechanism employed by this pathogen to prevent targeting by β-lactams.  相似文献   

16.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

17.
Kumar I  Pratt RF 《Biochemistry》2005,44(30):9961-9970
Bacterial dd-peptidases, the targets of beta-lactam antibiotics, are believed to catalyze d-alanyl-d-alanine carboxypeptidase and transpeptidase reactions in vivo. To date, however, there have been few concerted attempts to explore the kinetic and thermodynamic specificities of the active sites of these enzymes. We have shown that the peptidoglycan-mimetic peptide, glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl-d-alanine, 1, is a very specific and reactive carboxypeptidase substrate of the Streptomyces R61 dd-peptidase [Anderson, J. W., and Pratt, R. F. (2000) Biochemistry 39, 12200-12209]. In the present paper, we explore the transpeptidation reactions of this substrate, where the enzyme catalyzes transfer of the glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl moiety to amines. These reactions are believed to occur through capture of an acyl-enzyme intermediate by amines rather than water. Experiments show that effective acyl acceptors require a carboxylate group and thus are amino acids and peptides. d(but not l)-amino acids, analogues of the leaving group of 1, are good acceptors. The effectiveness of d-alanine as an acceptor increases with pH, suggesting that the bound and reactive form of an amino acid acceptor is the free amine. Certain glycyl-l(but not d)-amino acids, such as glycyl-l-alanine and glycyl-l-phenylalanine, are also good acceptors. These molecules may resemble the N-terminus of the Streptomyces stem peptides that, presumably, are the acceptors in vivo. The acyl acceptor binding site therefore demonstrates a dual specificity. That d-alanyl-l-alanine shows little activity as an acceptor suggested that, on binding of acceptors to the enzyme, the carboxylate of d-amino acids does not overlap with the peptide carbonyl group of glycyl-l-amino acids. Molecular modeling of transpeptidation tetrahedral intermediates and products demonstrated the likely structural bases for the stereospecificity of the acceptors and the nature of the dual function acceptor binding site. For both groups of acceptors, the terminal carboxylate appeared to be anchored at the active site by interaction with Arg 285 and Thr 299.  相似文献   

18.
Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90–95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.  相似文献   

19.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   

20.
In response to the widespread use of β-lactam antibiotics bacteria have evolved drug resistance mechanisms that include the production of resistant Penicillin Binding Proteins (PBPs). Boronic acids are potent β-lactamase inhibitors and have been shown to display some specificity for soluble transpeptidases and PBPs, but their potential as inhibitors of the latter enzymes is yet to be widely explored. Recently, a (2,6-dimethoxybenzamido)methylboronic acid was identified as being a potent inhibitor of Actinomadura sp. R39 transpeptidase (IC(50): 1.3 μM). In this work, we synthesized and studied the potential of a number of acylaminomethylboronic acids as inhibitors of PBPs from different classes. Several derivatives inhibited PBPs of classes A, B and C from penicillin sensitive strains. The (2-nitrobenzamido)methylboronic acid was identified as a good inhibitor of a class A PBP (PBP1b from Streptococcus pneumoniae, IC(50) = 26 μM), a class B PBP (PBP2xR6 from Streptococcus pneumoniae, IC(50) = 138 μM) and a class C PBP (R39 from Actinomadura sp., IC(50) = 0.6 μM). This work opens new avenues towards the development of molecules that inhibit PBPs, and eventually display bactericidal effects, on distinct bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号