首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

6.
7.
8.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

9.
BirA catalyzes the adenylation and subsequent covalent attachment of biotin to the biotin carboxyl carrier protein (BCCP). In the absence of apo-BCCP, biotin-5'-AMP acts as a co-repressor that induces BirA dimerization and binding to the bio operator to repress biotin biosynthesis. The crystal structures of apo-BirA, and BirA in complex with biotin have been reported. We here describe the 2.8A resolution crystal structure of BirA in complex with the co-repressor analog biotinol-5'-AMP. It was previously shown that the structure of apo-BirA is monomeric and that binding of biotin weakly induces a dimeric structure in which three disordered surface loops become organized to form the dimer interface. The structure of the co-repressor complex is also a dimer, clearly related to the BirA.biotin structure, but with several significant conformational changes. A hitherto disordered "adenylate binding loop" forms a well-defined structure covering the co-repressor. The co-repressor buttresses the dimer interface, resulting in improved packing and a 12 degrees change in the hinge-bending angle along the dimer interface relative to the BirA.biotin structure. This helps explain why the binding of the co-repressor is necessary to optimize the binding of BirA to the bioO operator. The structure reveals an unexpected use of the nucleotide-binding motif GXGXXG in binding adenylate and controlling the repressor function. Finally, based on structural analysis we propose that the class of adenylating enzymes represented by BirA, lipoate protein ligase and class II tRNA synthetases diverged early and were selected based on their ability to sequester co-factors or amino acid residues, and adenylation activity arose independently through functional convergence.  相似文献   

10.
11.
12.
Holocarboxylase synthetase (HCS, eukaryotic enzyme) and BirA (prokaryotic) are biotin protein ligases that catalyze the ATP-dependent attachment of biotin to apocarboxylases via the reactive intermediate, bio-5′-AMP. In this study, we examined the in vitro mechanism of biotin attachment to histone H2A in the presence of HCS and BirA. The experiment derives from our observations that HCS is found in the nucleus of cells in addition to the cytoplasm, and it has the ability to attach biotin to histones in vitro (Narang et al., Hum Mol Genet 2004; 13:15–23). Using recombinant HCS or BirA, the rate of biotin attachment was considerably slower with histone H2A than with the biotin binding domain of an apocarboxylase. However, on incubation of recombinant H2A with chemically synthesized bio-5′-AMP, H2A was observed to be rapidly labeled with biotin in the absence of enzyme. Nonenzymatic biotinylation of a truncated apocarboxylase (BCCP87) has been previously reported (Streaker and Beckett, Protein Sci 2006; 15:1928–1935), though at a much slower rate than we observe for H2A. The specific attachment sites of nonenzymatically biotinylated recombinant H2A at different time points were identified using mass spectrometry, and were found to consist of a similar pattern of biotin attachment as seen in the presence of HCS, with preference for lysines in the highly basic N-terminal region of the histone. None of the lysine sites within H2A resembles the biotin attachment consensus sequence seen in carboxylases, suggesting a novel mechanism for histone biotinylation.  相似文献   

13.
14.
人体内各种复杂的生命活动离不开蛋白质之间的相互作用。这种相互作用具有瞬时性和结合力弱等特点,并受到多种动态调节,特别是蛋白质翻译后修饰(post-translation modifications, PTM)。传统的亲和质谱检测方法存在蛋白纯化的局限性,在高效检测到动态变化方面存在不足。邻近标记是一种能够给与靶蛋白质瞬时靠近,或者互作(邻近)的蛋白质加上生物素的技术,它与质谱检测技术的联合使用能检测细胞过程中弱的、瞬时的蛋白质相互作用,有效解决上述问题。本文综述了基于生物素的邻近标记方法的发展现状,从依赖于融合序列的生物素标记开始,依次介绍有关生物素连接酶、过氧化物酶及其进化后的2代标记方法等经典生物素标记的方法和原理,比较各个方法间的差异和优缺点;也列举了一些近年来新出现的标记方法,如将生物素连接酶进行拆分、鉴定蛋白质在不同复合物中功能的方法、抗体靶向的标记方法,以及其他来源的生物素连接酶突变体,例如枯草芽孢杆菌(Bacillus subtilis)的C端氨基酸突变的生物素连接酶,能够应用在苍蝇和蠕虫中的生物素连接酶突变体。本文对这些方法进行归纳总结,旨在为初步接触该领域的科研工作者提供参考,同时也希望能够提供一些新的思路,推动蛋白质相互作用组学的发展。  相似文献   

15.
人体内各种复杂的生命活动离不开蛋白质之间的相互作用。这种相互作用具有瞬时性和结合力弱等特点,并受到多种动态调节,特别是蛋白质翻译后修饰(post-translation modifications, PTM)。传统的亲和质谱检测方法存在蛋白纯化的局限性,在高效检测到动态变化方面存在不足。邻近标记是一种能够给与靶蛋白质瞬时靠近,或者互作(邻近)的蛋白质加上生物素的技术,它与质谱检测技术的联合使用能检测细胞过程中弱的、瞬时的蛋白质相互作用,有效解决上述问题。本文综述了基于生物素的邻近标记方法的发展现状,从依赖于融合序列的生物素标记开始,依次介绍有关生物素连接酶、过氧化物酶及其进化后的2代标记方法等经典生物素标记的方法和原理,比较各个方法间的差异和优缺点;也列举了一些近年来新出现的标记方法,如将生物素连接酶进行拆分、鉴定蛋白质在不同复合物中功能的方法、抗体靶向的标记方法,以及其他来源的生物素连接酶突变体,例如枯草芽孢杆菌(Bacillus subtilis)的C端氨基酸突变的生物素连接酶,能够应用在苍蝇和蠕虫中的生物素连接酶突变体。本文对这些方法进行归纳总结,旨在为初步接触该领域的科研工作者提供参考,同时也希望能够提供一些新的思路,推动蛋白质相互作用组学的发展。  相似文献   

16.
17.
18.
Protein kinases can adopt multiple protein conformations depending on their activation status. Recently, in drug discovery, a paradigm shift has been initiated, moving from inhibition of fully activated, phosphorylated kinases to targeting the inactive, unphosphorylated forms. For identification and characterization of putative inhibitors, also interacting with the latent kinase conformation outside of the kinase domain, highly purified and homogeneous protein preparations of unphosphorylated kinases are essential. The kinetic parameters of nonphosphorylated kinases cannot be assessed easily by standard kinase enzyme assays as a result of their intrinsic autophosphorylation activity. Kinetic binding rate constants of inhibitor-protein interactions can be measured by biophysical means upon protein immobilization on chips. Protein immobilization can be achieved under mild conditions by binding biotinylated proteins to streptavidin-coated chips, exploiting the strong and highly specific streptavidin–biotin interaction. In the work reported here, the cytoplasmic domains of insulin receptor and insulin-like growth factor-1 receptor fused to a biotin ligase recognition sequence were coexpressed individually with the phosphatase YopH and the biotin-protein ligase BirA upon triple infection in insect cells. Tandem affinity purification yielded pure cytoplasmic kinase domains as judged by gel electrophoresis and HPLC. Liquid chromatography-mass spectrometry analysis showed the absence of any protein phosphorylation. Coexpression of BirA led to quantitative and site-specific biotinylation of the kinases, which had no influence on the catalytic activity of the kinases, as demonstrated by the identical phosphorylation pattern upon autoactivation and by enzymatic assay. This coexpression approach should be applicable to other protein kinases as well and should greatly facilitate the production of protein kinases in their phosphorylated and unphosphorylated state suitable for enzymatic and biophysical studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号