首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hiley SL  Sood VD  Fan J  Collins RA 《The EMBO journal》2002,21(17):4691-4698
To identify nucleotides in or near the active site, we have used a circularly permuted version of the VS ribozyme capable of cleavage and ligation to incorporate a single photoactive nucleotide analog, 4-thio- uridine, immediately downstream of the scissile bond. Exposure to UV light produced two cross-linked RNAs, in which the 4-thio-uridine was cross-linked to A756 in the 730 loop of helix VI. The cross-links formed only under conditions that support catalytic activity, suggesting that they reflect functionally relevant conformations of the RNA. One of the cross-linked RNAs contains a lariat, indicative of intramolecular cross-linking in the ligated RNA; the other is a branched molecule in which the scissile phosphodiester bond is cleaved, but occupies the same site in the ribozyme-substrate complex. These are the two forms of the RNA expected to be the ground state structures on either side of the transition state. This localization of the active site is consistent with previous mutational, biochemical and biophysical data, and provides direct evidence that the cleavage site in helix I interacts with the 730 loop in helix VI.  相似文献   

2.
Structure of an unusually stable RNA hairpin.   总被引:21,自引:0,他引:21  
G Varani  C Cheong  I Tinoco 《Biochemistry》1991,30(13):3280-3289
  相似文献   

3.
Cre initiates recombination by preferentially exchanging the bottom strands of the loxP site to form a Holliday intermediate, which is then resolved on the top strands. We previously found that the scissile AT and GC base pairs immediately 5' to the scissile phosphodiester bonds are critical in determining this order of strand exchange. We report here that the scissile base pairs also influence the Cre-induced DNA bends, the position of which correlates with the initial site of strand exchange. The binding of one Cre molecule to a loxP site induces a approximately 35 degrees asymmetric bend adjacent to the scissile GC base pair. The binding of two Cre molecules to a loxP site induces a approximately 55 degrees asymmetric bend near the center of the spacer region with a slight bias toward the scissile A. Lys-86, which contacts the scissile nucleotides, is important for establishing the bend near the scissile GC base pair when one Cre molecule is bound but has little role in positioning the bend when two Cre molecules are bound to a loxP site. We present a model relating the position of the Cre-induced bends to the order of strand exchange in the Cre-catalyzed recombination reaction.  相似文献   

4.
The 8-17 deoxyribozyme is an in vitro selected enzyme capable of sequence-specific cleavage of RNA. While selected to be a magnesium and zinc-utilizing enzyme, the 8-17 DNAzyme has been shown to utilize lead for its catalysis. Fluorescence-based experiments have indicated that the magnesium- and zinc-utilizing versions of the DNAzyme-substrate complex need to form a defined tertiary structure to be active, but no such global folding is required for the lead-mediated activity. Here, we have investigated this phenomenon, including the use of contact photo-crosslinking to map the tertiary fold of the lead-dependent DNAzyme. While our results recapitulate that global folding is not required for the lead activity, they reveal strikingly distinct lead-mediated modes of activity under conditions of low versus moderate solution ionic strength. Even in very low salt buffers, where no global folding of the 8-17 DNAzyme occurs, the active site of the enzyme appears to form a distinct local fold, one that cannot be modelled easily by DNA/RNA constructs that preserve key sequence and secondary structure features of the active site.  相似文献   

5.
6.
The crystal structure of Escherichia coli ribonuclease I (EcRNase I) reveals an RNase T2-type fold consisting of a conserved core of six beta-strands and three alpha-helices. The overall architecture of the catalytic residues is very similar to the plant and fungal RNase T2 family members, but the perimeter surrounding the active site is characterized by structural elements specific for E. coli. In the structure of EcRNase I in complex with a substrate-mimicking decadeoxynucleotide d(CGCGATCGCG), we observe a cytosine bound in the B2 base binding site and mixed binding of thymine and guanine in the B1 base binding site. The active site residues His55, His133, and Glu129 interact with the phosphodiester linkage only through a set of water molecules. Residues forming the B2 base recognition site are well conserved among bacterial homologs and may generate limited base specificity. On the other hand, the B1 binding cleft acquires true base aspecificity by combining hydrophobic van der Waals contacts at its sides with a water-mediated hydrogen-bonding network at the bottom. This B1 base recognition site is highly variable among bacterial sequences and the observed interactions are unique to EcRNaseI and a few close relatives.  相似文献   

7.
Pinard R  Lambert D  Walter NG  Heckman JE  Major F  Burke JM 《Biochemistry》1999,38(49):16035-16039
To form a catalytically active complex, the essential nucleotides of the hairpin ribozyme, embedded within the internal loops of the two domains, must interact with one another. Little is known about the nature of these essential interdomain interactions. In the work presented here, we have used recent topographical constraints and other biochemical data in conjunction with molecular modeling (constraint-satisfaction program MC-SYM) to generate testable models of interdomain interactions. Visual analysis of the generated models has revealed a potential interdomain base pair between the conserved guanosine immediately downstream of the reactive phosphodiester (G(+1)) and C(25) within the large domain. We have tested this former model through activity assays, using all 16 combinations of bases at positions +1 and 25. When the standard ribozyme was used, catalytic activity was severely suppressed with substrates containing U(+1), C(+1), or A(+1). Similarly, mutations of the putative pairing partner (C(25) to A(25) or G(25)) reduce activity by several orders of magnitude. The U(25) substitution retains a significant level of activity, consistent with the possible formation of a G.U wobble pair. Strikingly, when combinations of Watson-Crick (or wobble) base pairs were introduced in these positions, catalytic activity was restored, strongly suggesting the existence of the proposed interaction. These results provide a structural basis for the guanosine requirement of this ribozyme and indicate that the hairpin ribozyme can now be engineered to cleave a wider range of RNA sequences.  相似文献   

8.
Solution structure of a GAAA tetraloop receptor RNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
S E Butcher  T Dieckmann    J Feigon 《The EMBO journal》1997,16(24):7490-7499
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

9.
T-Hg-T base pair formation has been demonstrated to be compatible with duplex DNA context, with considerable thermal stability contribution. Here, the T-Hg-T stem in two small DNAzymes 8–17 and 10–23 was studied for its structural and functional roles. The recognition arm 5′ to the cleavage site of 10–23 DNAzyme complex and the stem in the catalytic loop of 8–17 DNAzyme could be replaced by consecutive T-Hg-T stem of different length. The linear relationship between the activity of the complex 10–23DZ-6T+D19–6T and the concentration of Hg2+ demonstrated that the T-Hg-T stem contributes thermal stability of the recognition arm binding. The effect of T-Hg-T stem in the catalytic core of 8–17 DNAzyme and the position-dependent effect in 10–23 DNAzyme demonstrated that T-Hg-T base pair is not compatible with canonical base pairs in playing the functions of nucleic acids.  相似文献   

10.
A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5′ exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5′ exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5′ exon and the intron. Here, we present the NMR solution structures of the d3′ hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg2+ ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.  相似文献   

11.
Effects of base sequence on the loop folding in DNA hairpins   总被引:23,自引:0,他引:23  
High-resolution NMR and UV-melting experiments have been used to study the hairpin formation of partly self-complementary DNA fragments in an attempt to derive rules that describe the folding in these molecules. Earlier experiments on the hexadecanucleotide d(ATCCTA-TTTT-TAGGAT) had indicated that within the loop of four thymidines a wobble T-T pair is formed (Blommers et al., 1987). In the present paper it is shown that if the first and the last thymines of the intervening sequence are replaced by complementary bases, sometimes base pairs can be formed. Thus for the intervening sequences -CTTG- and -TTTA- with the pyrimidine in the 5'-position and the purine in the 3'-position, a base pair is formed leading to a loop consisting of two residues. For the intervening sequences -GTTC- and -ATTT- with the purine in the 5'-position and the pyrimidine in the 3'-position, this turns out not to be the case. It was found that it made no difference when the four-membered sequence was closed by a G-C base pair or an A-T base pair. Replacement of the two central thymidine residues by the more bulky adenine residues limits the hairpin to a four-membered loop scheme. Very surprisingly, it was found from 2D NOE experiments that the T-A base pair, formed in the loop consisting of the -TTTA- sequence, is a Hoogsteen pair. It is argued that the pairing of the bases in this scheme may facilitate the formation of a loop of two residues, since the distance of the C1' atoms in this base pair is 8.6 A instead of 10.4 A found in the canonical Watson-Crick base pair. Combination of the data obtained for the series of DNA fragments studied shows that the results can be explained by a simple, earlier proposed, loop folding principle which assumes that the folding of the four-membered loop is dictated by the stacking of the double-helical stem of the hairpin.  相似文献   

12.
We investigated the PvuII endonuclease with its cognate DNA by means of molecular dynamics simulations. Comparing the complexed DNA with a reference simulation of free DNA, we saw structural changes at the scissile phosphodiester bond. At this GpC step, the enzyme induces the highest twist and axial rise, inclination is increased and the minor groove widened. The distance between the scissile phosphate group and the phosphate group of the following thymine base is shortened significantly, indicating a substrate-assisted catalysis. A feasible reason for this vicinity is the catalytically important amino acid residue lysine 70, which bridges the free oxygen atoms of the successive phosphate groups. Due to this geometry, a compact reaction pocket is formed where a water molecule can be held, thus bringing the reaction partners for hydrolysis into contact. The O1-P-O2 angle of the scissile nucleotide is decreased, probably due to a complexation of the negative oxygen atoms through protein and solvent contacts.  相似文献   

13.
The Cre recombinase of bacteriophage P1 cleaves its target site, loxP, in a defined order. Recombination is initiated on one pair of strands to form a Holliday intermediate, which is then resolved by cleavage and exchange of the other pair of strands to yield recombinant products. To investigate the influence of the loxP sequence on the directionality of resolution, we constructed synthetic Holliday (chi) structures containing either wild-type or mutant lox sites. We found that Cre preferentially resolved the synthetic wild-type chi structures on a particular pair of strands. The bias in the direction of resolution was dictated by the asymmetric loxP sequence since the resolution bias was abolished with symmetric lox sites. Systematic substitutions of the loxP site revealed that the bases immediately 5' to the scissile phosphodiester bonds were primarily responsible for the directionality of resolution. Interchanging these base pairs was sufficient to reverse the resolution bias. The Cre-lox co-crystal structures show that Lys(86) makes a base-specific contact with guanine immediately 5' to one of the scissile phosphates. Substituting Lys(86) with alanine resulted in a reduction of the resolution bias, indicating that this amino acid is important for establishing the bias in resolution.  相似文献   

14.
Distortions in the DNA sequence such as damages or mispairs are specifically recognized and processed by DNA repair enzymes. A particular challenge for the enzymatic specificity is the recognition of a wrongly-placed native nucleotide such as thymine in T:G mispairs. An important step of substrate binding which is observed in many repair proteins is the flipping of the target base out of the DNA helix into the enzyme’s active site. In this work we investigate how much the intrinsic dynamics of mispaired DNA is changed compared to canonical DNA. Our molecular dynamics simulations of DNA with and without T:G mispairs show significant differences in the conformation of paired and mispaired DNA. The wobble pair T:G shows local distortions such as twist, shear and stretch which deviate from canonical B form values. Moreover, the T:G mispair is found to be kinetically less stable, exhibiting two states with respect to base opening: a closed state comparable to the canonical base pairs, and a more open state, indicating a proneness for base flip. In addition, we observe that the thymine base in a T:G mispair is significantly more probable to be flipped than thymine in a T:A pair or cytosine in a C:G pair. Such local deformations and in particular the existence of a second, more-open state can be speculated to help the target-site recognition by repair enzymes.  相似文献   

15.
Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450•U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G•U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G•U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (kpep) was reduced ~200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G•U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pKa important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.  相似文献   

16.
The HDV ribozyme's folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U(23) and G(28) nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U(23) and G(28) can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction.  相似文献   

17.
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.  相似文献   

18.
Restricion endonuclease Ecl18kI is specific for the sequence /CCNGG and cleaves it before the outer C to generate 5 nt 5'-overhangs. It has been suggested that Ecl18kI is evolutionarily related to NgoMIV, a 6-bp cutter that cleaves the sequence G/CCGGC and leaves 4 nt 5'-overhangs. Here, we report the crystal structure of the Ecl18kI-DNA complex at 1.7 A resolution and compare it with the known structure of the NgoMIV-DNA complex. We find that Ecl18kI flips both central nucleotides within the CCNGG sequence and buries the extruded bases in pockets within the protein. Nucleotide flipping disrupts Watson-Crick base pairing, induces a kink in the DNA and shifts the DNA register by 1 bp, making the distances between scissile phosphates in the Ecl18kI and NgoMIV cocrystal structures nearly identical. Therefore, the two enzymes can use a conserved DNA recognition module, yet recognize different sequences, and form superimposable dimers, yet generate different cleavage patterns. Hence, Ecl18kI is the first example of a restriction endonuclease that flips nucleotides to achieve specificity for its recognition site.  相似文献   

19.
The cytotoxin sarcin disrupts elongation factor binding and protein synthesis by specifically cleaving one phosphodiester bond in ribosomes. To elucidate the molecular basis of toxin action, we determined three cocrystal structures of the sarcin homolog restrictocin bound to different analogs that mimic the target sarcin/ricin loop (SRL) structure of the rat 28S rRNA. In these structures, restrictocin contacts the bulged-G motif and an unfolded form of the tetraloop of the SRL RNA. In one structure, toxin loops guide selection of the target site by contacting the base critical for recognition (G4319) and the surrounding S-shaped backbone. In another structure, base flipping of the tetraloop enables cleavage by placing the target nucleotide in the active site with the nucleophile nearly inline for attack on the scissile bond. These structures provide the first views of how a site-specific protein endonuclease recognizes and cleaves a folded RNA substrate.  相似文献   

20.
M Molinaro  I Tinoco  Jr 《Nucleic acids research》1995,23(15):3056-3063
RNA molecules of > 20 nucleotides have been the focus of numerous recent NMR structural studies. Several investigators have used the UNCG family of hairpins to ensure proper folding. We show that th UUCG hairpin has a minimum requirement of a two base-pair stem. Hairpins with a CG loop closing base pair and an initial 5'CG or 5'GC base pair have a melting temperature approximately 55 degrees C in 10 mM sodium phosphate. The high stability of even such small hairpins suggests that the hairpin can serve as a nucleation site for folding. For high resolution NMR work, the UNCG loop family (UACG in particular) provides excellent spectroscopic markers in one-dimensional exchangeable spectra, in two-dimensional COSY spectra and in NOESY spectra that clearly define it as forming a hairpin. This allows straightforward initiation of chemical shift assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号