首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bifunctional α-amylase/serine protease inhibitor which inhibits germination-specific cereal α-amylases of the Graminae subfamily Festucoideae as well as bacterial subtilisins has been isolated from wheat grains. This protein has Mr ≈20500 and pI ≈7.2. The amino acid composition and N-teminal sequence (45 residues) show that the inhibitor is homologous with cereal and leguminous inhibitors of the soybean trypsin inhibitor (Kunitz) family.  相似文献   

2.
Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.  相似文献   

3.
J. Mundy  J. C. Rogers 《Planta》1986,169(1):51-63
We have cloned and sequenced a 650-nucleotide cDNA from barley (Hordeum vulgare L.) aleurone layers encoding a protein that is closely related to a known -amylase inhibitor from Indian finger millet (Eleusine coracana Gaertn.), and that has homologies to certain plant trypsin inhibitors. mRNA for this probable amylase/protease inhibitor (PAPI) is expressed primarily in aleurone tissue during late development of the grain, as compared to that for the amylase/subtilisin inhibitor, which is expressed in endosperm during the peak of storage-protein synthesis. PAPI mRNA is present at high levels in aleurone tissue of desiccated, mature grain, and in incubated aleurone layers prepared from rehydrated mature seeds. Its expression in those layers is not affected by either abscisic acid or gibberellic acid, hormones that, respectively, increase and decrease the abundance of mRNA for the amylase/subtilisin inhibitor. PAPI mRNA is almost as abundant in gibberellic acid-treated aleurone layers as that for -amylase, and PAPI protein is synthesized in that tissue at levels that are comparable to -amylase. PAPI protein is secreted from aleurone layers into the incubation medium.Abbreviations ABA abscisic acid - ASI barley amylase/subtilisin inhibitor - bp nucleotide base pairs - Da dalton - dpa days post anthesis - GA3 gibberellic acid - PAPI probable amylase/protease inhibitor - poly(A)RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

4.
Both ribosome-inactivating proteins (RIPs) and plant proteinase inhibitors, belong to protein families known to regulate cellular homeostasis and likely involved in plant defense. Nevertheless the interest in these protein classes is due to their potential use for the treatment of several important human diseases such as cancer. Thus, in the present study, type 1 ribosome-inactivating protein and wheat subtilisin/chymotrypsin inhibitor, were engineered into a chimeric protein with cytotoxic action selective for murine tumor cells, while lacking any appreciable toxicity on murine normal cells. This chimeric protein selectively sensitizes to apoptotic death cells derived from Simian-virus-40-transformed mouse fibroblasts (SVT2 cells). The cytotoxicity of this new recombinant product has been detected also on three different human malignant cells. Therefore action on tumor cells of this protein could represent a potentially very attractive novel tool for anticancer drug design.  相似文献   

5.
Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites as binding barriers. Barley alpha-amylase 1 mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in alpha-amylases.  相似文献   

6.
One particularly interesting single nucleotide polymorphism (SNP), rs6235 (encoding an S690T substitution), in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene has been widely associated with obesity in several European cohorts. The present study was intended to investigate the association between the PCSK1 rs6235 SNP and the prevalence of overweight or obesity, or obesity-related metabolic traits in a Taiwanese population. A total of 964 Taiwanese subjects with general health examinations were analyzed. Our data revealed no association of PCSK1 rs6235 with the risk of obesity or overweight in the complete subjects. However, the PCSK1 rs6235 SNP exhibited a significant association with overweight among the male subjects (P = 0.03), but not among the female subjects. Furthermore, the carriers of GG variant had a significantly higher waist circumference than those with the CC variant (82.5 ± 11.5 vs. 81.2 ± 10.2 cm; P = 0.01) and those with the CG variant (82.5 ± 11.5 vs. 81.4 ± 10.4 cm; P = 0.021). In addition, the carriers of GG variant had a higher diastolic blood pressure than those with the CC variant (81.9 ± 14.2 vs. 80.3 ± 12.9 mm Hg; P = 0.023). Our study indicates that the PCSK1 rs6235 SNP may contribute to the risk of overweight in men and predict obesity-related metabolic traits such as waist circumference and diastolic blood pressure in Taiwanese subjects.  相似文献   

7.
Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) can efficiently hydrolyze both starch and cyclomaltooligosaccharides (cyclodextrins). The crystal structure of an inactive mutant TVAII in a complex with maltohexaose was determined at a resolution of 2.1A. TVAII adopts a dimeric structure to form two catalytic sites, where substrates are found to bind. At the catalytic site, there are many hydrogen bonds between the enzyme and substrate at the non-reducing end from the hydrolyzing site, but few hydrogen bonds at the reducing end, where two aromatic residues, Trp356 and Tyr45, make effective interactions with a substrate. Trp356 drastically changes its side-chain conformation to achieve a strong stacking interaction with the substrate, and Tyr45 from another molecule forms a water-mediated hydrogen bond with the substrate. Kinetic analysis of the wild-type and mutant enzymes in which Trp356 and/or Tyr45 were replaced with Ala suggested that Trp356 and Tyr45 are essential to the catalytic reaction of the enzyme, and that the formation of a dimeric structure is indispensable for TVAII to hydrolyze both starch and cyclodextrins.  相似文献   

8.
9.
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.Electronic supplementary materialThe online version of this article (10.1007/s13238-020-00766-y) contains supplementary material, which is available to authorized users.  相似文献   

10.
The interaction potential between a curved surface body and a particle located on the surface of the body is studied in this paper. Based on the negative exponential pair potential (1/R n ) between particles, the interaction potential is proved to be of the curvature-based form, i.e., it can be written as a function of curvatures of the surface. Idealized numerical experiments are designed to test the accuracy of curvature-based potential. Based on the curvature-based potential, propositions below are confirmed: a highly curved surface body will induce driving forces on the particle located on the surface, and curvatures and the gradients of curvatures are essential factors forming the driving forces. In addition, the tangent driving force acting on the particle from the curved surface body is studied. Based on duality, the following rule is proved: for a convex or concave curved body sharing the same curved surface, the curvature-based interaction potential between them and a particle on the surface can make up the potential of a particle in the whole space.  相似文献   

11.
Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl)-1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.  相似文献   

12.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

13.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

14.
Interactions between dopamine and glutamate receptors are essential for prefrontal cortical (PFC) and hippocampal cognitive functions. The hippocampus has been identified as a detector of a novel stimulus, where an association between incoming information and stored memories takes place. Further to our previous results which showed a strong synergistic interaction of dopamine D1 and glutamate NMDA receptors, the present study is going to investigate the functional status of that interaction in rats, following their exposure to a novel environment. Our results showed that the “spatial” novelty induced in rat hippocampus and PFC (a) a significant increase in phosphorylation of NMDA and AMPA receptor subunits, as well as a robust phosphorylation/activation of ERK1/2 signaling, which are both dependent on the concomitant stimulation of D1/NMDA receptors and are both abolished by habituation procedure, (b) chromatin remodeling events (phosphorylation-acetylation of histone H3) and (c) an increase in the immediate early genes (IEGs) c-Fos and zif-268 expression in the CA1 region of hippocampus, which is dependent on the co-activation of D1/NMDA and acetylcholine muscarinic receptors. In conclusion, our results clearly show that a strong synergistic interaction of D1/NMDA receptor is required for the novelty-induced phosphorylation of NMDA and AMPA receptor subunits and for the robust activation of ERK1/2 signaling, leading to chromatin remodeling events and the expression of the IEGs c-Fos and zif-268, which are involved in the regulation of synaptic plasticity and memory consolidation.  相似文献   

15.
Schmidt S  Adolf F  Fuchsbauer HL 《FEBS letters》2008,582(20):3132-3138
Transglutaminase (TGase) from Streptomyces mobaraensis is an extra-cellular enzyme that cross-links proteins to high molecular weight aggregates. Screening for intrinsic substrates now revealed the dual Streptomyces subtilisin inhibitor-like inhibitor Streptomyces subtilisin and transglutaminase activating metalloprotease (TAMEP) inhibitor (SSTI), equally directed against subtilisin and the TGase activating metalloprotease TAMEP, is both a glutamine and a lysine donor protein. Reactivity of glutamines is lost during culture, most likely by TGase mediated deamidation, and, accordingly, cross-linking only occurred if SSTI from early cultures was used. Interestingly, release of buried endo-glutamines by the lipoamino acid N-lauroylsarcosine could restore SSTI reactivity. Formation of lipoamino acids by Streptomycetes suggests such compounds could also modulate in vivo TGase mediated SSTI cross-linking.  相似文献   

16.
Zhang Q  Wang J  Fan S  Wang L  Cao L  Tang K  Peng C  Li Z  Li W  Gan K  Liu Z  Li X  Shen S  Li G 《FEBS letters》2005,579(17):3674-3682
LRRC4, a novel member of LRR superfamily thought to be involved in development and tumorigenesis of the nervous tissue, has the potential to suppress tumorigenesis and cell proliferation of U251MG cells. This study aimed at revealing the correlation between expression of LRRC4 and the maintenance of normal function and tumorigenesis suppression within the central nervous system. We systematically analyzed the expression and tissue distributions of the gene in tissues. Results showed that LRRC4 expression was limited to normal adult brain, both in human and in mouse, and exhibited a development-regulated pattern, but was down-regulated in brain tumor tissues and U251MG cell line. Furthermore, dynamic alterations in gene expression associated with cell cycle progression were investigated by using Tet-on system. Results showed that LRRC4 induced a cell cycle delay at the late G1 phase, probably through the alteration of the expression of different cell cycle regulating proteins responsible for mediating G1-S progression, such as p21(Waf1/Cip1) and p27(Kip1), Cdk2 and PCNA, p-ERK1/2. These findings suggest that LRRC4 may play an important role in maintaining normal function and suppressing tumorigenesis in the central nervous system.  相似文献   

17.
Yajie Zhang  Cheng Liu  Shuang Liu  Tingyun Kuang 《BBA》2008,1777(6):479-487
Three isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different isoforms were analysed. Comparison of their spectroscopic properties and structural stabilities revealed that Lhcb3 differed strongly from Lhcb1 and Lhcb2 in both respects. It showed the lowest Qy transition energy, with its reddest absorption about 2 nm red-shifted, and the highest photostability under strong illuminations. Among the three isoforms, Lhcb 2 showed lowest thermal stability regarding energy transfer from Chl b to Chl a in the complexes, which implies that the main function of Lhcb 2 under high temperature stress is not the energy transfer.  相似文献   

18.
Protein-protein interactions usually involve a large number of residues; thus it is difficult to elucidate functional and structural roles of specific residues located in the interface. This problem is particularly challenging for ankyrin repeat proteins (ARs), which consist of linear arrays of small repeating units and play critical roles in almost every life process via protein-protein interactions, because the residues involved are discontinuously dispersed in both the ARs and their partners. Our previous studies showed that while both specific CDK4 inhibitor p16INK4A (P16) and gankyrin bind to cyclin-dependent kinase 4 (CDK4) in similar fashion, only P16 inhibits the kinase activity of CDK4. While this could explain why P16 is a tumor suppressor and gankyrin is oncogenic, the structural basis of these contrasting properties was unknown. Here we show that a double mutant of gankyrin, L62H/I79D, inhibits the kinase activity of CDK4, similar to P16, and such CDK4-inhibtory activity is associated with the I79D but not L62H mutation. In addition, mutations at I79 and L62 bring about a moderate decrease in the stability of gankyrin. Further structural and biophysical analyses suggest that the substitution of Ile79 with Asp leads to local conformational changes in loops I-III of gankyrin. Taken together, our results allow the dissection of the "protein-protein binding" and "CDK4 inhibition" functions of P16, show that the difference between tumor suppressing and oncogenic functions of P16 and gankyrin, respectively, mainly resides in a single residue, and provide structural insight to the contrasting biological functions of the two AR proteins.  相似文献   

19.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   

20.
Members of subclass Copepoda are abundant, diverse, and—as a result of their variety of ecological roles in marine and freshwater environments—important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831 base pairs) of Amphiascoides atopus and 10,649 base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号