首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplasts of higher plants contain a unique signal recognition particle (cpSRP) that consists of two proteins, cpSRP54 and cpSRP43. CpSRP43 is composed of a four ankyrin repeat domain and three functionally distinct chromodomains (CDs). In this report we confirm previously published data that the second chromodomain (CD2) provides the primary binding site for cpSRP54. However, quantitative binding analysis demonstrates that cpSRP54 binds to CD2 significantly less efficiently than it binds to full-length cpSRP43. Further analysis of the binding interface of cpSRP by mutagenesis studies and a pepscan approach demonstrates that the C-terminal alpha-helix of CD2 facilitates binding to cpSRP54.  相似文献   

2.
In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.  相似文献   

3.
Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP.  相似文献   

4.
Chloroplasts contain a unique signal recognition particle (cpSRP). Unlike the cytoplasmic forms, the cpSRP lacks RNA but contains a conserved 54-kDa GTPase and a novel 43-kDa subunit (cpSRP43). Recently, three functionally distinct chromodomains (CDs) have been identified in cpSRP43. In the present study, we report the three-dimensional solution structures of the three CDs (CD1, CD2, and CD3) using a variety of triple resonance NMR experiments. The structure of CD1 consists of a triple-stranded beta-sheet segment. The C-terminal helical segment typically found in the nuclear chromodomains is absent in CD1. The secondary structural elements in CD2 and CD3 include a triple-stranded antiparallel beta-sheet and a C-terminal helix. Interestingly, the orientation of the C-terminal helix is significantly different in the structures of CD2 and CD3. Critical comparison of the structures of the chromodomains of cpSRP43 with those found in nuclear chromodomain proteins revealed that the diverse protein-protein interactions mediated by the CDs appear to stem from the differences that exist in the surface charge potentials of each CD. Results of isothermal titration calorimetry experiments confirmed that only CD2 is involved in binding to cpSRP54. The negatively charged C-terminal helix in CD2 possibly plays a crucial role in the cpSRP54-cpSRP43 interaction.  相似文献   

5.
The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified the two components of the Arabidopsis thaliana chloroplast signal recognition particle (cpSRP) involved in post-translational transport: cpSRP54 and the chloroplast-specific protein, cpSRP43. Recombinant cpSRP supports the efficient in vitro insertion of pea preLhcb1 into isolated thylakoid membranes. Recombinant cpSRP is a stable heterodimer with a molecular mass of approximately 100 kDa as determined by analytical ultracentrifugation, gel filtration analysis, and dynamic light scattering. The interactions of the components of the recombinant heterodimer and pea preLhcb1 were probed using an immobilized peptide library (pepscan) approach. These data confirm two previously reported interactions with the L18 region and the third transmembrane helix of Lhcb1 and suggest that the interface of the cpSRP43 and cpSRP54 proteins is involved in substrate binding. Additionally, cpSRP components are shown to recognize peptides from the cleavable, N-terminal chloroplast transit peptide of preLhcb1. The interaction of cpSRP43 with cpSRP54 was probed in a similar experiment with a peptide library representing cpSPR54. The C terminus of cpSRP54 is essential for the formation of the stable cpSRP complex and cpSPR43 interacts with distinct regions of the M domain of cpSRP54.  相似文献   

6.
Thomas Bals  Silke Funke 《FEBS letters》2010,584(19):4138-4144
The chloroplast signal recognition particle (cpSRP) and its receptor, cpFtsY, posttranslationally target the nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the translocase Alb3 in the thylakoid membrane. In this study, we analyzed the interplay between the cpSRP pathway components, the substrate protein LHCP and the translocase Alb3 by using in vivo and in vitro techniques. We propose that cpSRP43 is crucial for the binding of LHCP-loaded cpSRP and cpFtsY to Alb3. In addition, our data suggest that a direct interaction between Alb3 and LHCP contributes to the formation of this complex.

Structured summary

MINT-7992851: Alb3 (uniprotkb:Q8LBP4) physically interacts (MI:0915) with cpSRP43 (uniprotkb:O22265) by two hybrid (MI:0018)MINT-7992897: cpSRP43 (uniprotkb:O22265) and Alb3 (uniprotkb:Q8LBP4) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7993251: SRP43 (uniprotkb:O22265) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993207: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), LHCP (uniprotkb:P27490), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993272: Alb3 (uniprotkb:Q8LBP4) and LHCB (uniprotkb:P27490) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7992960: cpSRP43 (uniprotkb:O22265) binds (MI:0407) to Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993236: Alb3 (uniprotkb:Q8LBP4) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993166: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with LHCP (uniprotkb:P27490) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993118: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with Alb3 (uniprotkb:Q8LBP4), SRP-54 (uniprotkb:P37106) and LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993046: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993004: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with SRP54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)  相似文献   

7.
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions.  相似文献   

8.
Chloroplast signal recognition particle (cpSRP) is a novel type of SRP that contains a homolog of SRP54 and a 43-kDa subunit absent from all cytoplasmic SRPs but lacks RNA. It is also distinctive in its ability to post-translationally interact with light-harvesting chlorophyll proteins (LHCP), hydrophobic proteins synthesized in the cytoplasm and targeted to the thylakoid via the stroma. LHCP integration into thylakoid membranes requires the two subunits of cpSRP, cpFtsY, GTP, and the membrane protein ALB3. It had previously been shown that the L18 domain, an 18-amino acid peptide between the second and third transmembrane domains, and a hydrophobic domain are required for interaction with cpSRP. In the present study we used a pull-down assay, with cpSRP43 or cpSRP54 fused to glutathione-transferase, to study interactions between cpSRP43, cpSRP54, LHCP, and cpFtsY. cpFtsY was not observed to form significant interactions with any of the proteins even in the presence of nonhydrolyzable GTP analogs. Our data indicate that cpSRP43 binds to the L18 domain, that cpSRP54 binds to the hydrophobic domain, and that LHCP and cpSRP54 independently bind to cpSRP43. These data confirm that the novel post-translational interaction between LHCP and cpSRP is mediated through binding to cpSRP43.  相似文献   

9.
The chloroplast signal recognition particle consists of a conserved 54-kDa GTPase and a novel 43-kDa chromodomain protein (cpSRP43) that together bind light-harvesting chlorophyll a/b-binding protein (LHCP) to form a soluble targeting complex that is subsequently directed to the thylakoid membrane. Homology-based modeling of cpSRP43 indicates the presence of two previously identified chromodomains along with a third N-terminal chromodomain. Chromodomain deletion constructs were used to examine the role of each chromodomain in mediating distinct steps in the LHCP localization mechanism. The C-terminal chromodomain is completely dispensable for LHCP targeting/integration in vitro. The central chromodomain is essential for both targeting complex formation and integration because of its role in binding the M domain of cpSRP54. The N-terminal chromodomain (CD1) is unnecessary for targeting complex formation but is required for integration. This correlates with the ability of CD1 along with the ankyrin repeat region of cpSRP43 to regulate the GTPase cycle of the cpSRP-receptor complex.  相似文献   

10.
Functional analysis of the protein-interacting domains of chloroplast SRP43   总被引:5,自引:0,他引:5  
The chloroplast signal recognition particle (cpSRP) consists of an evolutionarily conserved 54-kDa subunit (cpSRP54) and a dimer of a unique 43-kDa subunit (cpSRP43). cpSRP binds light-harvesting chlorophyll proteins (LHCPs) to form a cpSRP/LHCP transit complex, which targets LHCP to the thylakoid membrane. Previous studies showed that transit complex formation is mediated through the binding of the L18 domain of LHCP to cpSRP43. cpSRP43 is characterized by a four-ankyrin repeat domain at the N terminus and two chromodomains at the C terminus. In the present study we used the yeast two-hybrid system and in vitro binding assays to analyze the function of different domains of cpSRP43 in protein complex formation. We report here that the first ankyrin repeat binds to the 18-amino acid domain on LHCP that binds to cpSRP43, whereas the third and fourth ankyrin repeats are involved in the dimerization of cpSRP43. We show further that the interaction of cpSRP43 with cpSRP54 is mediated via binding of the methionine-rich domain of cpSRP54 to the C-terminally located chromodomains of cpSRP43. Both chromodomains contain essential elements for binding cpSRP54, indicating that the closely spaced chromodomains together create a single binding site for cpSRP54. In addition, our data demonstrate that the interaction of cpSRP54 with the chromodomains of cpSRP43 is enhanced indirectly by the dimerization motif of cpSRP43.  相似文献   

11.
One of the pathways for protein targeting to the plasma membrane in bacteria utilizes the co-translationally acting signal recognition particle (SRP), a universally conserved ribonucleoprotein complex consisting of a 54 kDa protein and a functional RNA. An interesting exception is the higher plant chloroplast SRP, which lacks the otherwise essential RNA component. Furthermore, green plant chloroplasts have an additional post-translational SRP-dependent transport system in which the chloroplast-specific cpSRP43 protein binds to imported substrate proteins and to the conserved 54 kDa SRP subunit (cpSRP54). While homologs to the bacterial SRP protein and RNA component previously have been identified in genome sequences of red algae and diatoms, a recent study investigated the evolution of the green plant SRP system.1 Analysis of hundreds of plastid and nuclear genomes showed a surprising pattern of multiple losses of the plastid SRP RNA during evolution and a widespread presence in all non-spermatophyte plants and green algae. Contrary to expectations, all green organisms that have an identified cpSRP RNA also contain a cpSRP43. Notably, the structure of the plastid SRP RNAs is much more diverse than that of bacterial SRP RNAs. The apical GNRA tetraloop is only conserved in organisms of the red lineage and basal organisms of the green lineage, whereas further chloroplast SRP RNAs are characterized by atypical, mostly enlarged apical loops.  相似文献   

12.
Chloroplasts contain a novel type of signal recognition particle (cpSRP) that consists of two proteins, cpSRP54 and cpSRP43. cpSRP is involved in the post-translational targeting of the nuclear encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the thylakoid membrane by forming a soluble cpSRP.LHCP transit complex in the stroma. Despite high sequence homology between chloroplast and cytosolic SRP54 proteins, the 54-kDa subunit of cpSRP is unique in its ability to bind cpSRP43. In this report, we identified a 10-amino acid long segment of cpSRP54 that forms the cpSRP43-binding site. This segment is located at position 530-539 close to the C terminus of cpSRP54. In addition, we demonstrate that arginine at position 537 is essential for binding cpSRP43 and that mutation of arginine 536 drastically reduced cpSRP43 binding. Mutations within the cpSRP43-binding site of cpSRP54 that reduced or completely abolished cpSRP complex formation also did inhibit transit complex formation and integration of LHCP into the thylakoid membrane, reflecting the importance of these residues for LHCP targeting. Alignment studies revealed that the cpSRP43-binding site is conserved in chloroplast SRP54 proteins and is not present in any SRP54 subunit of cytosolic SRPs.  相似文献   

13.
Integration of thylakoid proteins by the chloroplast signal recognition particle (cpSRP) posttranslational transport pathway requires the cpSRP, an SRP receptor homologue (cpFtsY), and the membrane protein ALB3. Similarly, Escherichia coli uses an SRP and FtsY to cotranslationally target membrane proteins to the SecYEG translocase, which contains an ALB3 homologue, YidC. In neither system are the interactions between soluble and membrane components well understood. We show that complexes containing cpSRP, cpFtsY, and ALB3 can be precipitated using affinity tags on cpSRP or cpFtsY. Stabilization of this complex with GMP-PNP specifically blocks subsequent integration of substrate (light harvesting chl a/b-binding protein [LHCP]), indicating that the complex occupies functional ALB3 translocation sites. Surprisingly, neither substrate nor cpSRP43, a component of cpSRP, was necessary to form a complex with ALB3. Complexes also contained cpSecY, but its removal did not inhibit ALB3 function. Furthermore, antibody bound to ALB3 prevented ALB3 association with cpSRP and cpFtsY and inhibited LHCP integration suggesting that a complex containing cpSRP, cpFtsY, and ALB3 must form for proper LHCP integration.  相似文献   

14.
Richter CV  Träger C  Schünemann D 《FEBS letters》2008,582(21-22):3223-3229
The chloroplast signal recognition particle (cpSRP) consists of a conserved 54kDa subunit (cpSRP54) and a unique 43kDa subunit (cpSRP43) but lacks SRP-RNA, an essential and universally conserved component of cytosolic SRPs. High sequence similarity exists between cpSRP54 and bacterial SRP54 except for a plant-specific C-terminal extension containing the cpSRP43-binding motif. We found that cpSRP54 of higher plants lacks the ability to bind SRP-RNA because of two amino acid substitutions within a region corresponding to the RNA binding domain of cytosolic SRP54, whereas the C-terminal extension does not affect RNA binding. Phylogenetic analysis revealed that these mutations occur in the cpSRP54 homologues of higher plants but not in most algae.  相似文献   

15.
The evolutionary origin of some nuclear encoded proteins that translocate proteins across the chloroplast envelope remains unknown. Therefore, sequences of GTPase proteins constituting the Arabidopsis thaliana translocon at the outer membrane of chloroplast (atToc) complexes were analyzed by means of HCA. In particular, atToc159 and related proteins (atToc132, atToc120, and atToc90) do not have proven homologues of prokaryotic or eukaryotic ancestry. We established that the three domains commonly referred to as A, G, and M originate from the GTPase G domain, tandemly repeated, and probably evolving toward an unstructured conformation in the case of the A domain. It resulted from this study a putative common ancestor for these proteins and a new domain definition, in particular the splitting of A into three domains (A1, A2, and A3), has been proposed. The family of Toc159, previously containing A. thaliana and Pisum sativum, has been extended to Medicago truncatula and Populus trichocarpa and it has been revised for Oryza sativa. They have also been compared to GTPase subunits involved in the cpSRP system. A distant homology has been revealed among Toc and cpSRP GTP-hydrolyzing proteins of A. thaliana, and repetitions of a GTPase domain were also found in cpSRP protein receptors, by means of HCA analysis.  相似文献   

16.
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.  相似文献   

17.
The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.  相似文献   

18.
A cpSRP [chloroplast SRP (signal recognition particle)] comprising cpSRP54 and cpSRP43 subunits mediates the insertion of light-harvesting proteins into the thylakoid membrane. We dissected its interaction with a full-length membrane protein substrate in aqueous solution by insertion of site-specific photo-activatable cross-linkers into in vitro-synthesized Lhcb1 (major light-harvesting chlorophyll-binding protein of photosystem II). We show that Lhcb1 residues 166-176 cross-link specifically to the cpSRP43 subunit. Some cross-link positions within Lhcb1 are in the 'L18' peptide required for targeting of cpSRP substrates, whereas other cross-linking positions define a new targeting signal in the third transmembrane span. Lhcb1 was not found to cross-link to cpSRP54 at any position, and cross-linking to cpSRP43 is unaffected by the absence of cpSRP54. cpSRP43 thus effectively binds substrates autonomously, and its ability to independently bind an extended 20+-residue substrate region highlights a major difference with other SRP types?where the SRP54 subunit binds to hydrophobic target sequences. The results also show that cpSRP43 can bind to a hydrophobic, three-membrane span, substrate in aqueous solution, presumably reflecting a role for cpSRP in the chloroplast stroma. This mode of action, and the specificity of the cpSRP43-substrate interaction, may be associated with cpSRP's unique post-translational mode of action.  相似文献   

19.
The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane proceeds in two steps. First, LHCP interacts with a chloroplast signal recognition particle (cpSRP) to form a soluble targeting intermediate called the transit complex. Second, LHCP integrates into the thylakoid membrane in the presence of GTP, at least one other soluble factor, and undefined membrane components. We previously determined that cpSRP is composed of 43- and 54-kDa polypeptides. We have examined the subunit stoichiometry of cpSRP and find that it is trimeric and composed of two subunits of cpSRP43/subunit of cpSRP54. A chloroplast homologue of FtsY, an Escherichia coli protein that is critical for the function of E. coli SRP, was found largely in the stroma unassociated with cpSRP. When chloroplast FtsY was combined with cpSRP and GTP, the three factors promoted efficient LHCP integration into thylakoid membranes in the absence of stroma, demonstrating that they are all required for reconstituting the soluble phase of LHCP transport.  相似文献   

20.
RNase T1 mimicking artificial ribonuclease   总被引:1,自引:0,他引:1       下载免费PDF全文
Recently, artificial ribonucleases (aRNases)—conjugates of oligodeoxyribonucleotides and peptide (LR)4-G-amide—were designed and assessed in terms of the activity and specificity of RNA cleavage. The conjugates were shown to cleave RNA at Pyr-A and G–X sequences. Variations of oligonucleotide length and sequence, peptide and linker structure led to the development of conjugates exhibiting G–X cleavage specificity only. The most efficient catalyst is built of nonadeoxyribonucleotide of unique sequence and peptide (LR)4-G-NH2 connected by the linker of three abasic deoxyribonucleotides (conjugate pep-9). Investigation of the cleavage specificity of conjugate pep-9 showed that the compound is the first single-stranded guanine-specific aRNase, which mimics RNase T1. Rate enhancement of RNA cleavage at G–X linkages catalysed by pep-9 is 108 compared to non-catalysed reaction, pep-9 cleaves these linkages only 105-fold less efficiently than RNase T1 (kcat_RNase T1/kcat_pep-9 = 105).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号