首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the function of chloroplast ascorbate peroxidase under temperature stress, the thylakoid-bound ascorbate peroxidase gene from tomato leaf (TtAPX) was introduced into tobacco. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that TtAPX in tomato was induced by chilling or heat stress. Over-expression of TtAPX in tobacco improved seed germination under temperature stress. Two transgenic tobacco lines showed higher ascorbate peroxidase activity, accumulated less hydrogen peroxide and malondialdehyde than wild type plants under stress condition. The photochemical efficiency of photosystem 2 in the transgenic lines was distinctly higher than that of wild type plants under chilling and heat stresses. Results indicated that the over-expression of TtAPX enhanced tolerance to temperature stress in transgenic tobacco plants.  相似文献   

2.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

3.
为了探讨番茄GDP—L-半乳糖磷酸酶对烟草抗坏血酸(AsA)含量及抗氧化能力的影响,从番茄叶片中分离了GDP-L-半乳糖磷酸酶基因(LeGGP),并转入到烟草中。以野生型(WT)和转正义LeGGP烟草株系T1-3和T1-15为试材,测定了甲基紫精(MV)处理下AsA、脱氢抗坏血酸(DHA)、H2O2、O2-和叶绿素含量、抗坏血酸过氧化物酶(APX)活性、光合速率和叶绿素荧光参数等。Northem杂交分析表明LeGGP的表达受MV的诱导,在MV处理下,野生型烟草的离体叶圆片发生比转基因烟草更严重的光漂白,转基因烟草的AsA含量及清除H2O2和O2-的能力明显强于野生型,过表达LePGG胀高了烟草的生长量。并且转基因烟草比野生型具有更高的净光合效率(Pn)和光系统Ⅱ(PSII)最大光化学效率(眠)。结果表明,LeGGP的过表达有助于提高烟草AsA含量及抗氧化胁迫能力。  相似文献   

4.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

5.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

6.
In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T(1) and T(2) plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA(3) (gibberellic acid) treatment. More importantly, GA(3)-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H(2)O(2) in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress.  相似文献   

7.
An endoplasmic reticulum-localized tomato omega-3 fatty acid desaturase gene (LeFAD3) was isolated and characterized with regard to its sequence, response to various temperatures and function in transgenic tomato plants. Northern blot analysis showed that LeFAD3 was expressed in all organs tested and was markedly abundant in roots. Meanwhile, the expression of LeFAD3 was induced by chilling stress (4 °C), but inhibited by high temperature (40 °C). The transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analyses confirmed that sense LeFAD3 was transferred into tomato genome and overexpressed. Level of linolenic acids (18:3) increased and correspondingly level of linoleic acid (18:2) decreased in leaves and roots. After chilling stress, the fresh weight of the aerial parts of transgenic plants was higher than that of the wild type (WT) plants, and the membrane system ultrastructure of chloroplast in leaf cell and all the subcellular organelles in root tips of transgenic plants kept more intact than those of WT. Relative electric conductivity increased less in transgenic plants than that in WT, and the respiration rate of the transgenic plants was notably higher than that of WT. The maximal photochemical efficiency of PSII (Fv/Fm) and the O2 evolution rate in WT decreased more than those in transgenic plants under chilling stress. Together with other data, results showed that the overexpression of LeFAD3 led to increased level of 18:3 and alleviated the injuries under chilling stress.  相似文献   

8.
9.
10.
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 μmol m−2 s−1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of 18: 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance.  相似文献   

11.
This study was carried out to determine the effect of chilling on both cold-acclimated and non-acclimated chickpea (Cicer arietinum L.) cultivars (Gökçe and Can?tez 87). Chickpea seedlings grown in soil culture for 12 days were subjected to chilling temperatures (2 and 4°C for 12 days) after maintaining in cold-acclimation (10°C, 7 days) or non-acclimation (25°C, 7 days) periods. The lowest values of growth parameters were obtained with cold-acclimated plants, whereas non-acclimated plants exhibited the lowest water content values, especially at 2°C. There was no effect of cold-acclimation period on chlorophyll fluorescence parameters. Plants subjected to chilling temperatures after cold-acclimation were more tolerant with respect to chlorophyll fluorescence parameters, and Gökçe had better photosystem II (PSII) photochemical activity. In the chilling treatments, total chlorophyll (a + b) content reduced, especially at 2°C, while anthocyanin and flavonoid contents increased to a greater extent in Gökçe and carotenoid content of the cultivars did not change. Malondialdehyde (MDA) content was higher for Can?tez 87, mostly at 2°C, while proline accumulation was greater for Gökçe. The cold-acclimation period led to a remarkable increase in antioxidant enzyme activities of both cultivars. The superoxide dismutase (SOD) activity was much higher in Gökçe for both chilling temperatures and the ascorbate peroxidase (APX) activity increased only in the cold-acclimated 4°C treatments. Similarly, with APX activity, the glutathione reductase (GR) and peroxidase (POD) activities of cultivars were higher in cold-acclimated plants at both the chilling temperatures, mostly in Gökçe. The results of this study indicate that cold-acclimation increased the cultivars ability to withstand the chilling temperatures. The lower MDA content and higher antioxidant and photochemical activities in Gökçe indicated an enhanced chilling tolerance capacity of this cultivar to protect the plant from oxidative damage.  相似文献   

12.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   

13.
14.
15.
A tomato (Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene (LeZE) was isolated and antisense transgenic tomato plants were produced. Northern, southern, and western blot analyses demonstrated that antisense LeZE was transferred into the tomato genome and the expression of LeZE was inhibited. The ratio of (A+Z)/(V+A+Z) in antisense transgenic plants was maintained at a higher level than in the wild type (WT) plants under high light and chilling stress with low irradiance. The value of non-photochemical quenching (NPQ) in WT and transgenic plants was not affected during the stresses. The oxidizable P700 and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more slowly at chilling temperature under low irradiance. These results suggested that suppression of LeZE caused zeaxanthin accumulation, which was helpful in alleviating photoinhibition of PSI and PSII in tomato plants under chilling stress.  相似文献   

16.
光强在低温弱光胁迫后番茄叶片光合作用恢复中的作用   总被引:7,自引:0,他引:7  
为了研究光强在低温弱光胁迫后番茄叶片光合作用恢复中的作用,以番茄品种浙粉202为材料,研究了低温弱光后恢复期全光照与遮荫对光合作用和叶绿素荧光参数的影响。结果表明:低温弱光(8℃/12℃,PFD 80 μmol·m-2·s-1)导致番茄叶片PnΦPSⅡqPFv′/Fm′的下降,但诱导了NPQ的上升,未引起Fv/Fm的变化;全光照(100%光照)下恢复1 使得植株叶片PnFv/FmΦPSⅡqPNPQFv′/Fm′均大幅下降,随后光合和荧光参数可缓慢恢复至对照水平;遮荫(40%光照)恢复植株Fv/FmΦPSⅡFv′/Fm′仅在第一天稍有下降,而PnqP还略有上升,NPQ虽有所降低但仍显著高于对照水平,随后光合和荧光参数均可迅速恢复到对照水平。说明低温弱光虽抑制了光合作用的进行,但并未引起光抑制的发生;全光照恢复加剧了叶片光抑制的发生,而遮荫恢复可通过叶片PSⅡ光化学活性的快速恢复和天线色素热耗散能力的增强以保护光合机构免受伤害,有利于光合作用的迅速恢复。  相似文献   

17.
Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.  相似文献   

18.
19.
20.
We studied how tomato (Lycopersicon esculentum Mill.) chloroplast omega-3 fatty acid desaturase gene (Lefad7) overexpression enhanced low-temperature (LT) tolerance in transgenic tomato plants. In these plants, the content of linolenic acid (18:3) markedly increased and, correspondingly, the content of linoleic acid (18:2) decreased. Similar changes were found after 6 h under LT (4°C) treatment. Under LT stress, wild type (WT) tomato plants showed a much greater increase in relative electrolyte leakage and malondialdehyde (MDA) contents compared with transgenic plants. Transgenic plants exhibited higher activities of antioxidative enzymes and a lower content of reactive oxygen species (ROS). Transgenic plants maintained a relatively higher level of the net photosynthetic rate (P N) and chlorophyll (Chl) content than WT plants under LT stress. Taken together, we suggested that overexpression of Lefad7 enhanced LT tolerance by changing the composition of membrane lipids in tomato plants, with the increased content of trienoic fatty acids and reduced content of dienoic fatty acids that led to series of physiological alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号