首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was shown for the first time that myeloperoxidase, a homodimer that consists of two disulfidebonded identical protomers and catalyzes the formation of hypochlorous acid (HOCl), is decomposed by HOCl into monomers (MPO-Cl). Dimeric myeloperoxidase can also be converted into monomers (hemimyeloperoxidase) by reduction of the disulfide bond. In this study, the effects of two monomeric forms of myeloperoxidase, MPO-Cl and hemi-myeloperoxidase, and native dimeric myeloperoxidase on the production of reactive oxygen (?O 2 ? and H2O2) and halogen (HOCl) species by neutrophils were compared. Neutrophil production of these species was monitored after addition of hemi-myeloperoxidase, MPO-Cl, or dimeric myeloperoxidase and also after the subsequent addition of activators, phorbol-12-myristate-13-acetate or N-formyl-Met-Leu-Phe. HOCl production was assessed by chemiluminescence in the presence of luminol; ?O 2 ? production was assessed by chemiluminescence in the presence of lucigenin and by cytochrome c reduction determined spectrophotometrically, and H2O2 production was measured using fluorimetry with scopoletin. The results indicate that MPO-Cl and hemi-myeloperoxidase, which can occur in blood under halogenative stress, do not prime neutrophil NADPH oxidase, and do not enhance the production of reactive oxygen (?O 2 ? and H2O2) and halogen (HOCl) species.  相似文献   

2.
It is shown that human serum albumin, previously treated with HOCl (HSA-Cl), enhances luminol-dependent chemiluminescence of neutrophils activated by phorbol-12-myristate-13-acetate (PMA). The enzyme-linked immunosorbent assay revealed that addition of HSA-Cl to neutrophils promotes exocytosis of myeloperoxidase. Inhibitor of myeloperoxidase — 4-aminobenzoic acid hydrazide, without any effect on lucigenin-dependent chemiluminescence of neutrophils stimulated with PMA, effectively suppressed luminol-dependent chemiluminescence (IC50 = 20 μM) under the same conditions. The transfer of the cells from medium with HSA-Cl and myeloperoxidase to fresh medium abolished an increase in PMA-induced luminol-dependent chemiluminescence, but not the ability of neutrophils to respond to re-addition of HSA-Cl. A direct and significant (r = 0.75, p < 0.01) correlation was observed between the intensity of PMA stimulated neutrophil chemiluminescence response and myeloperoxidase activity in the cell-free media after chemiluminescence measurements. These results suggest the involvement of myeloperoxidase in the increase of neutrophil PMA-stimulated chemiluminescence response in the presence of HSA-Cl. A significant positive correlation was found between myeloperoxidase activity in blood plasma of children with severe burns and the enhancing effects of albumin fraction of the same plasma on luminol-dependent chemiluminescence of PMA-stimulated donor neutrophils. These results support a hypothesis that proteins modified in reactions involving myeloperoxidase under oxidative/halogenative stress, stimulate neutrophils, leading to exocytosis of myeloperoxidase, a key element of halogenative stress, and to closing a “vicious circle” of neutrophil activation at the inflammatory site.  相似文献   

3.
Hypochlorous acid (HOCl) is a potent oxidant produced by the enzyme myeloperoxidase, which is released by neutrophils under inflammatory conditions. Although important in the immune system, HOCl can also damage host tissue, which contributes to the development of disease. HOCl reacts readily with free amino groups to form N-chloramines, which also cause damage in vivo, owing to the extracellular release of myeloperoxidase and production of HOCl. HOCl and N-chloramines react readily with cellular thiols, which causes dysfunction via enzyme inactivation and modulation of redox signaling processes. In this study, the ability of HOCl and model N-chloramines produced on histamine and ammonia at inflammatory sites, to oxidize specific thiol-containing proteins in human coronary artery endothelial cells was investigated. Using a proteomics approach with the thiol-specific probe, 5-iodoacetamidofluorescein, we show that several proteins including peptidylprolyl isomerase A (cyclophilin A), protein disulfide isomerase, glyceraldehyde-3-phosphate dehydrogenase and galectin-1 are particularly sensitive to oxidation by HOCl and N-chloramines formed at inflammatory sites. This will contribute to cellular dysfunction and may play a role in inflammatory disease pathogenesis.  相似文献   

4.
Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.  相似文献   

5.
Cystatins are the inhibitors of thiol proteinases and are ubiquitously present in mammalian system. In brain, they put off unwanted proteolysis and are also involved in several neurodegenerative diseases. In the present study, it was demonstrated that photo-activated HOCl-induced modifications in brain cystatin leading to its inactivation and degradation due to hydroxyl radicals. It has been shown that oxidation of cystatin by ROS in vivo leads to oxidative modification which may direct the damage of this significant protein, as it is so well pronounced in vitro. The interplay between free radicals, antioxidants and co-factors is important in maintaining health, aging and age-related diseases. Body’s endogenous antioxidant systems stabilize free radical-induced oxidative stress by the ingestion of exogenous antioxidants. If the generation of free radicals goes beyond the protective effect of antioxidants, this can cause oxidative damage which accumulates during the life cycle and has been implicated in aging and age-related diseases such as cardiovascular disease, cancer, neurodegenerative disorders and other chronic conditions. Activation of neutrophils in certain diseases (e.g., inflammatory conditions and atherosclerosis) results in the production of highly reactive species, such as OH? and the release of the enzyme myeloperoxidase. Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. Hypochlorous acid (HOCl) is a potent oxidant formed by myeloperoxidase that causes aggregation of many proteins and damage of proteins by reaction with amino-acid side-chains or backbone cleavage.

Communicated by Ramaswamy H. Sarma  相似文献   


6.
Enzymatic and bactericidal activities of mature, dimeric myeloperoxidase (MPO) and its monomeric form have been compared. Dimeric MPO was isolated from HL-60 cells. Hemi-MPO obtained from dimeric MPO by reductive cleavage of a disulfide bond between protomeric subunits was used as the monomeric form. Both peroxidase and halogenating (chlorinating) activities of MPO were assayed, each by two methods. Bactericidal activity of the MPO/Н2О2/Cl ̄ system was tested using the Escherichia coli laboratory strain DH5α. No difference in the enzymatic and bactericidal activity between dimeric MPO and hemi- MPO was found. Both forms of the enzyme also did not differ in the resistance to HOCl, the main product of MPO. HOCl caused a dose-dependent decrease in peroxidase and chlorinating activity, and the pattern of this decrease was identical for dimeric MPO and hemi-MPO. At the equal heme concentration, the hemi- MPO/Н2О2/Cl ̄ system demonstrated a somewhat higher bactericidal effect than the dimeric MPO/Н2О2/Cl ̄ system. This is most likely explained by higher probability of contacts between the bacterial surface and hemi-MPO molecules, since at the same heme concentration the number of hemi-MPO molecules is 2-fold higher than that of dimeric MPO molecules. Using Western-blotting with antibodies to MPO, we have shown, for the first time, that the dimeric molecule of MPO could be cleaved into two monomeric subunits by HOCl, most probably due to oxidation of the disulfide bond between these subunits. This suggests that appearance in blood of MPO with mass corresponding to its monomer may result from the damage of dimeric MPO by reactive halogen species, especially upon their overproduction inducing oxidative/halogenative stress in inflammatory diseases.  相似文献   

7.
Activated neutrophils generate the potent oxidant hypochlorous acid (HOCl) from the enzyme myeloperoxidase (MPO). A proposed bio-marker for MPO-derived HOCl in vivo is 3-chlorotyrosine, elevated levels of which have been measured in several human inflammatory pathologies. However, it is unlikely that HOCl is produced as the sole oxidant at sites of chronic inflammation as other reactive species are also produced during the inflammatory response. The work presented shows that free and protein bound 3-chlorotyrosine is lost upon addition of the pro-inflammatory oxidants, HOCl, peroxynitrite, and acidified nitrite. Furthermore, incubation of 3-chlorotyrosine with activated RAW264.7 macrophages or neutrophil-like HL-60 cells resulted in significant loss of 3-chlorotyrosine. Therefore, at sites of chronic inflammation where there is concomitant ONOO and HOCl formation, it is possible measurement of 3-chlorotyrosine may represent an underestimate of the true extent of tyrosine chlorination. This finding could account for some of the discrepancies reported between 3-chlorotyrosine levels in tissues in the literature.  相似文献   

8.
Oxidative stress has been implicated as playing a role in neurodegenerative disorders, such as ischemic stroke, Alzheimer's, Huntington's, and Parkinson's disease. Persuasive evidences have shown that microglial-mediated oxidative stress contributes significantly to cell loss and accompanying cognitive decline characteristic of the diseases. Based on the facts that (i) levels of catalytically active myeloperoxidase are elevated in diseased brains and (ii) myeloperoxidase polymorphism is associated with the risk of developing neurodegenerative disorders, HOCl as a major oxidant produced by activated phagocytes in the presence of myeloperoxidase is therefore suggested to be involved in neurodegeneration. Its association with neurodegeneration is further showed by elevated level of 3-chlorotyrosine (bio-marker of HOCl in vivo) in affected brain regions as well as HOCl scavenging ability of neuroprotectants, desferrioxamine and uric acid. In this review, we will summary the current understanding concerning the association of HOCl and neuronal cell death where production of HOCl will lead to further formation of reactive nitrogen and oxygen species. In addition, HOCl also causes tissue destruction and cellular damage leading cell death.  相似文献   

9.
Peroxynitrite (ONOO-) is a reactive nitrogen species which in vivo is often assessed by the measurement of free or protein bound 3-nitrotyrosine. Indeed, 3-nitrotyrosine has been detected in many human diseases. However, at sites of inflammation there is also production of the powerful oxidant hypochlorous acid (HOCl) formed by the enzyme myeloperoxidase. Low concentrations of HOCl (<30 microM) caused significant and rapid loss (<10 minutes) of free and protein bound 3-nitrotyrosine. In contrast, no loss of 3-nitrotyrosine was observed with hydrogen peroxide, hydroxyl radical, or superoxide generating systems. Therefore, under conditions where there is concomitant peroxynitrite and hypochlorous acid formation, such as at sites of chronic inflammation, it is possible that HOCl removes 3-nitrotyrosine. This may have implications when assessing the role of reactive nitrogen species in disease conditions and could account for some of the discrepancies reported between 3-nitrotyrosine levels in tissues.  相似文献   

10.
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with “cytokine storms” could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.  相似文献   

11.
Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits.  相似文献   

12.
Inflammatory liver diseases are associated with oxidative stress mediated particularly by neutrophilic granulocytes. At inflammatory loci, hypochlorous acid (HOCl) is generated by myeloperoxidase. HOCl reacts with a large variety of molecules and induces (among other reactions) the formation of lysophosphatidylcholine (LPC) from polyunsaturated phosphatidylcholines (PC).As liver tissue contains huge amounts of polyunsaturated PC species enhanced LPC concentrations are detectable under these conditions. However, human liver contains also major amounts of polyunsaturated phosphatidylethanolamine (PE). It is so far widely unknown, if PE oxidation by HOCl leads to the generation of LPE in a similar way as observed in the case of PC. Using MALDI-TOF mass spectrometry (MS) and 31P NMR spectroscopy, LPC generation from unsaturated PC could be verified in the presence of HOCl. In contrast, unsaturated PE led exclusively to chlorohydrins and other oxidation products but not to LPE.Although these data were obtained with a quite simple model system, it is obvious that LPC is a much more suitable biomarker of oxidative stress than LPE: LPC is more readily generated and also more sensitively detectable by means of mass spectrometry and other spectroscopic methods. Nevertheless, it will also be shown that the nitrile of LPE is also generated. However, this compound is exclusively detectable as negative ion.  相似文献   

13.
The potent oxidants hypochlorous acid (HOCl) and hypobromous acid (HOBr) are produced extracellularly by myeloperoxidase, following release of this enzyme from activated leukocytes. The subendothelial extracellular matrix is a key site for deposition of myeloperoxidase and damage by myeloperoxidase-derived oxidants, with this damage implicated in the impairment of vascular cell function during acute inflammatory responses and chronic inflammatory diseases such as atherosclerosis. The heparan sulfate proteoglycan perlecan, a key component of the subendothelial extracellular matrix, regulates important cellular processes and is a potential target for HOCl and HOBr. It is shown here that perlecan binds myeloperoxidase via its heparan sulfate side chains and that this enhances oxidative damage by myeloperoxidase-derived HOCl and HOBr. This damage involved selective degradation of the perlecan protein core without detectable alteration of its heparan sulfate side chains, despite the presence of reactive GlcNH2 residing within this glycosaminoglycan. Modification of the protein core by HOCl and HOBr (measured by loss of immunological recognition of native protein epitopes and the appearance of oxidatively-modified protein epitopes) was associated with an impairment of its ability to support endothelial cell adhesion, with this observed at a pathologically-achievable oxidant dose of 425 nmol oxidant/mg protein. In contrast, the heparan sulfate chains of HOCl/HOBr-modified perlecan retained their ability to bind FGF-2 and collagen V and were able to promote FGF-2-dependent cellular proliferation. Collectively, these data highlight the potential role of perlecan oxidation, and consequent deregulation of cell function, in vascular injuries by myeloperoxidase-derived HOCl and HOBr.  相似文献   

14.
Hypochlorous acid-modified human blood low density lipoprotein (LDL–HOCl) was shown to stimulate neutrophils and to increase the luminol- (lm-CL) or lucigenin-enhanced chemiluminescence (lc-CL) of neutrophils. Antioxidants and HOCl scavengers (glutathione, taurine, cysteine, methionine, ceruloplasmin, and human serum albumin (HSA)) were tested for effects on lm-CL, lc-CL, H2O2 production, and degranulation of azurophilic granules of neutrophils. All agents used in increasing concentrations were found to decrease lm-CL produced by neutrophils upon stimulation with LDL–HOCl or subsequent treatment with the activator phorbol 12-myristate 13-acetate (PMA). The agents exerted a far lower, if any, effect on lc-CL and the H2O2 production by neutrophils in the same conditions. In the majority of cases, a decline in neutrophil chemiluminescence in the presence of the agents was not related to their effect on neutrophil degranulation, but was most likely due to their direct interactions with reactive halogen (RHS) or oxygen (ROS) species generated upon neutrophil activation or to myeloperoxidase (MPO) inhibition. Antioxidants and HOCl scavengers present in the human body were assumed to decelerate the development of oxidative or halogenative stress and thereby prevent neutrophil activation.  相似文献   

15.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed.  相似文献   

16.
Neutrophil oxidants, including the myeloperoxidase products, HOCl and chloramines, have been linked to endothelial dysfunction in inflammatory diseases such as atherosclerosis. As they react preferentially with sulfur centers, thiol proteins are likely to be cellular targets. Our objectives were to establish whether there is selective protein oxidation in vascular endothelial cells treated with HOCl or chloramines, and to identify sensitive proteins. Cells were treated with HOCl, glycine chloramine and monochloramine, reversibly oxidized cysteines were labeled and separated by 1D or 2D SDS-PAGE, and proteins were characterized by mass spectrometry. Selective protein oxidation was observed, with chloramines and HOCl causing more changes than H(2)O(2). Cyclophilin A was one of the most sensitive targets, particularly with glycine chloramine. Cyclophilin A was also oxidized in Jurkat T cells where its identity was confirmed using a knockout cell line. The product was a mixed disulfide with glutathione, with glutathionylation at Cys-161. Glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxins and cofilin were also highly sensitive to HOCl/chloramines. Cyclophilins are becoming recognized as redox regulatory proteins, and glutathionylation is an important mechanism for redox regulation. Cells lacking Cyclophilin A showed more glutathionylation of other proteins than wild-type cells, suggesting that cyclophilin-regulated deglutathionylation could contribute to redox changes in HOCl/chloramine-exposed cells.  相似文献   

17.
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H(2)O(2)) in the airways through its ability to oxidize thiocyanate (SCN(-)) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 μM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O(2), Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN(-). On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.  相似文献   

18.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed.  相似文献   

19.
20.
Carbamoylation is the non-enzymatic reaction of cyanate with amino-, hydroxy- or thiol groups. In vivo, amino group modification (N-carbamoylation) resulting in altered function of proteins/amino acids has been observed in patients suffering from uraemia due to urea-derived cyanate. Uraemia has been linked to impaired antioxidant defense. As thiol-compounds like cysteine, N-acetyl cysteine and GSH have oxidant scavenging properties one may speculate that thiol-group carbamoylation (S-carbamoylation) may impair their protective activity. Here we report on the effect of S-carbamoylation on the ABTS free radical and HOCl scavenging property of cysteine as well on its ability to protect LDL from atherogenic modification induced by AAPH generated peroxylradicals or HOCl. The results show that S-carbamoylation impaired the ABTS free radical and HOCl scavenging property of the thiol-compounds tested. The ability of the thiols to protect LDL from lipid oxidation and apolipoprotein modification was strongly diminished by S-carbamoylation. The data indicate that S-carbamoylation could impair the free radical and HOCl scavenging of thiol-amino acids reducing their protective property against LDL atherogenic modification by these oxidant species. As S-carbamoylation is most effective at pH 7 to 5 in vivo thiol-carbamoylation may especially occur at sites of acidic extracellular pH as in hypoxic/inflammatory macrophage rich areas like the atherosclerotic plaque where increased LDL oxidation has been found and may contribute to the higher oxidative stress in uraemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号