首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.  相似文献   

2.
Watershed urbanization leads to dramatic changes in draining streams, with urban streams receiving a high frequency of scouring flows, together with the nutrient, contaminant, and thermal pollution associated with urbanization. These changes are known to cause significant losses of sensitive insect and fish species from urban streams, yet little is known about how these changes affect the composition and function of stream microbial communities. Over the course of two years, we repeatedly sampled sediments from eight central North Carolina streams affected to varying degrees by watershed urbanization. For each stream and sampling date, we characterized both overall and denitrifying bacterial communities and measured denitrification potentials. Denitrification is an ecologically important process, mediated by denitrifying bacteria that use nitrate and organic carbon as substrates. Differences in overall and denitrifying bacterial community composition were strongly associated with the gradient in urbanization. Denitrification potentials, which varied widely, were not significantly associated with substrate supply. By incorporating information on the community composition of denitrifying bacteria together with substrate supply in a linear mixed-effects model, we explained 45% of the variation in denitrification potential (p-value<0.001). Our results suggest that (1) the composition of stream bacterial communities change in response to watershed urbanization and (2) such changes may have important consequences for critical ecosystem functions such as denitrification.  相似文献   

3.
Urbanization leads to degradation in water quality and has a major effect on the biota of streams, but its effect on microbial communities is not as well understood. DNA-techniques that target functional genes are being used to examine microbial communities, but less frequently applied to freshwater aquatic systems. Our aim was to determine whether terminal restriction fragment length polymorphism and sequence analysis of polymerase chain reaction-amplified (PCR) nosZ gene sequences could be used to show if there were measurable differences in the denitrifying community in two urban streams in catchments with contrasting degrees of catchment urbanization. Community structure in the sediments and associated riparian zones were studied at the contrasting sites. We showed that the denitrifying community in the sediments and riparian soils of the two streams were significantly different. There were also significant differences between the sediment and riparian zone communities within each of the sites. Terminal restriction fragment length polymorphism analysis proved to be a valuable technique that could resolve patterns of the denitrifying community in streams of contrasting degrees of urbanization, but sequence analysis was required to confirm the identity of the amplified products.  相似文献   

4.
Changes in regional climate in the Rocky Mountains over the next 100 years are expected to have significant effects on biogeochemical cycles and hydrological processes. In particular, decreased discharge and lower stream depth during summer when ultraviolet radiation (UVR) is the highest combined with greater photo-oxidation of dissolved organic materials (DOM) will significantly increase exposure of benthic communities to UVR. Communities in many Rocky Mountain streams are simultaneously exposed to elevated metals from abandoned mines, the toxicity and bioavailability of which are also determined by DOM. We integrated field surveys of 19 streams (21 sites) along a gradient of metal contamination with microcosm and field experiments conducted in Colorado, USA, and New Zealand to investigate the influence of DOM on bioavailability of heavy metals and exposure of benthic communities to UVR. Spatial and seasonal variation in DOM were closely related to stream discharge and significantly influenced heavy metal uptake in benthic organisms. Qualitative and quantitative changes in DOM resulting from exposure to sunlight increased UV-B (290–320 nm) penetration and toxicity of heavy metals. Results of microcosm experiments showed that benthic communities from a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B than communities from a reference stream. We speculate that the greater sensitivity of these communities to UV-B resulted from costs associated with metal tolerance. Exclusion of UVR from 12 separate Colorado streams and from outdoor stream microcosms in New Zealand increased the abundance of benthic organisms (mayflies, stoneflies, and caddisflies) by 18% and 54%, respectively. Our findings demonstrate the importance of considering changes in regional climate and UV-B exposure when assessing the effects of local anthropogenic stressors.  相似文献   

5.
We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition.  相似文献   

6.
Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded conditions (e.g., vegetation clearing). Here we compare the efficacy of an urban remnant and a cleared riparian zone for supporting a putative denitrifying microbial community using 16S rRNA sequencing and quantitative polymerase chain reaction of archaeal and bacterial nitrogen cycling genes. Although we had no direct measure of denitrification rates, we found clear patterns in the microbial communities between the sites. Greater abundance of N-cycling genes was predicted by greater soil ammonium (N-NH4), organic phosphorus, and C:N. At the remnant site, we found positive correlations between microbial community composition, which was dominated by putative N oxidisers (Nitrosomonadaceae, Nitrospiraceae and Nitrosotaleaceae), and abundance of ammonia-oxidizing archaea (AOA), nirS, nirK and nosZ, whereas the cleared site had lower abundance of N-oxidisers and N cycling genes. These results were especially profound for the remnant riparian fringe, which suggests that this region maintains suitable soil conditions (via diverse vegetation structure and periodic saturation) to support putative N cyclers, which could amount to higher potential for N removal.  相似文献   

7.
Carbon (C) and nitrogen (N) are strongly coupled across ecosystems due to stoichiometrically balanced assimilatory demand as well as dissimilatory processes such as denitrification. Microorganisms mediate these biogeochemical cycles, but how microbial communities respond to environmental changes, such as dissolved organic carbon (DOC) availability, and how those responses impact coupled biogeochemical cycles in streams is not clear. We enriched a stream in central Indiana with labile DOC for 5?days to investigate coupled C and N cycling. Before, and on day 5 of the enrichment, we examined assimilatory uptake and denitrification using whole-stream 15N-nitrate tracer additions and short-term nitrate releases. Concurrently, we measured bacterial and denitrifier abundance and community structure. We predicted N assimilation and denitrification would be stimulated by the addition of labile C and would be mediated by increases in bacterial activity, abundance, and a shift in community structure. In response to the twofold increase in DOC concentrations in the water column, N assimilation increased throughout the enrichment. Community respiration doubled during the enrichment and was associated with a change in bacterial community structure (based on terminal restriction fragment length polymorphisms of the 16S rRNA gene). In contrast, there was little response in denitrification or denitrifier community structure, likely because labile C was assimilated by heterotrophic communities on the stream bed prior to reaching denitrifiers within the sediments. Our results suggest that coupling between C and N in streams involves potentially complex interactions with sediment texture and organic matter, microbial community structure, and possibly indirect biogeochemical pathways.  相似文献   

8.
Within aquatic ecosystems, periphytic biofilms can be hot spots of denitrification, and previous work has suggested that algal taxa within periphyton can influence the species composition and activity of resident denitrifying bacteria. This study tested the hypothesis that algal species composition within biofilms influences the structure and function of associated denitrifying bacterial communities through the composition of organic exudates. A mixed population of bacteria was incubated with organic carbon isolated from one of seven algal species or from one of two streams that differed in anthropogenic inputs. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) revealed differences in the organic composition of algal exudates and stream waters, which, in turn, selected for distinct bacterial communities. Organic carbon source had a significant effect on potential denitrification rates (DNP) of the communities, with organics isolated from a stream with high anthropogenic inputs resulting in a bacterial community with the highest DNP. There was no correlation between DNP and numbers of denitrifiers (based on nirS copy numbers), but there was a strong relationship between the species composition of denitrifier communities (as indicated by tag pyrosequencing of nosZ genes) and DNP. Specifically, the relative abundance of Pseudomonas stutzeri-like nosZ sequences across treatments correlated significantly with DNP, and bacterial communities incubated with organic carbon from the stream with high anthropogenic inputs had the highest relative abundance of P. stutzeri-like nosZ sequences. These results demonstrate a significant relationship between bacterial community composition and function and provide evidence of the potential impacts of anthropogenic inputs on the structure and function of stream microbial communities.  相似文献   

9.
Urbanization is associated with substantial losses to stream biological diversity throughout the United States' mid‐Atlantic. Stream restoration has been used to improve stream conditions and, in part, to ameliorate these losses. However, the relationship between restoration and recovery of biological diversity is unclear. Our objective was to critically examine the efficacy of urban stream restorations with regard to biological diversity. We compared restored urban streams to urban nonrestored, nonurban, and reference (minimally degraded) streams using five measures each of fish and benthic macroinvertebrate diversity. Both multivariate and univariate statistical analyses show biological diversity of restored urban streams to be similar to nonrestored urban streams and lower than nonurban and reference streams. Restored urban sites showed no apparent increase in biological diversity through time, while diversity decreased at two of the reference streams coincident with increased urban development within their catchments. Our results indicate that restoration approaches commonly used regionally as in these urban streams are not leading to recovery of native stream biodiversity. Evidence from several sources indicates a need for dramatic changes in restoration approach, and we argue for a watershed‐scale focus including protection of the least impacted streams and adopting other land‐based actions within the watershed where possible.  相似文献   

10.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

11.
In this study, we tested the hypothesis that agriculture, through its influence on water NO3 ?-N availability, would control denitrification in agriculturally influenced temporary saline streams, and that water salinity would not affect this process. We also tested the effect of summer drought on the denitrification process. We approached these objectives by estimating sediment denitrification (using the acetylene inhibition technique) in two temporary Mediterranean streams following an increased natural water salinity and agricultural gradient under pre- and post-drought conditions. During the pre-drought conditions, the water NO3 ?-N concentration was the main predictor of denitrification rates. Together with the water NO3 ?-N concentration, sediment redox conditions and water salinity appeared to be significant predictors, the latter showing a negative effect. During the post-drought, denitrification rates dropped significantly in both streams and no abiotic factors seemed to significantly influence this process. Our results suggest that high water salinity and drought affected negatively the stream-denitrifying capacity. This study highlights that stressors such as water salinity and hydrological intermittency should be considered in future stream management plans in order to preserve the role of streams on controlling the NO3 ?-N export, especially in the context of a warmer and drier climate.  相似文献   

12.
The effects of stream urbanization on fishes have been well studied in general. Yet despite the wealth of knowledge available for streams in many different ecoregions, relatively little is known of the effects of urbanization on prairie stream fishes. Management of urban stormwater through impoundment has the potential to fragment streams, and habitat fragmentation on nonurban streams has been documented to relate to declines in small-bodied mobile minnow species. We asked whether urban habitat fragmentation through stormwater impoundment would relate to a similar decline in small-bodied fishes in Cottonwood Creek, a stream system partially managed by stormwater impoundment in central Oklahoma. Analyses with basic metrics of ecological tolerance, richness, community structure, and multivariate ordination found negative relationships between cyprinid richness and abundance and a metric of urban habitat fragmentation, as well as between Lepomis humilis, a small-bodied sunfish, and the metric of urban habitat fragmentation. We review potential hypotheses for these biological patterns in fragmented urban streams, including predation, lack of successful reproduction, and lack of ability to recolonize above barriers.  相似文献   

13.
Mangroves are unique and highly productive ecosystems and harbor very special microbial communities. Although the phylogenetic diversity of sediment microbial communities of mangrove habitats has been examined extensively, little is known regarding their functional gene diversity and metabolic potential. In this study, a high-throughput functional gene array (GeoChip 4.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of microbial communities in mangrove habitats from mangrove national nature reserves in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 4.0 were detected in the mangrove microbial communities, including carbon (C) fixation, C degradation, methane generation, nitrogen (N) fixation, nitrification, denitrification, ammonification, N reduction, sulfur (S) metabolism, metal resistance, antibiotic resistance, and organic contaminant degradation. Detrended correspondence analysis (DCA) of all detected genes showed that Spartina alterniflora (HH), an invasive species, did not harbor significantly different microbial communities from Aegiceras corniculatum (THY), a native species, but did differ from other species, Kenaelia candel (QQ), Aricennia marina (BGR), and mangrove-free mud flat (GT). Canonical correspondence analysis (CCA) results indicated the microbial community structure was largely shaped by surrounding environmental variables, such as total nitrogen (TN), total carbon (TC), pH, C/N ratio, and especially salinity. This study presents a comprehensive survey of functional gene diversity of soil microbial communities from different mangrove habitats/species and provides new insights into our understanding of the functional potential of microbial communities in mangrove ecosystems.  相似文献   

14.
Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 μM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program ∫-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site.  相似文献   

15.
16.
Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems.  相似文献   

17.
Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.  相似文献   

18.
Microbial biofilms in oligotrophic environments are the most reactive component of the ecosystem. In high-altitude lakes, exposed bedrock, boulders, gravel, and sand in contact with highly oxygenated water and where a very thin epilithic biofilm develops usually dominate the littoral zone. Traditionally, these surfaces have been considered unsuitable for denitrification, but recent investigations have shown higher biological diversity than expected, including diverse anaerobic microorganisms. In this study, we explored the presence of microbial N-cycling nirS and nirK (denitrification through the conversion of NO2 ? to NO), nifH (N2 fixation), anammox (anaerobic ammonium oxidation), and amoA (aerobic ammonia oxidation, both bacterial and archaeal) genes in epilithic biofilms of a set of high-altitude oligotrophic lakes in the Pyrenees. The concentrations of denitrifying genes determined by quantitative PCR were two orders of magnitude higher than those of ammonia-oxidizing genes. Both types of genes were significantly correlated, suggesting a potential tight coupling nitrification-denitrification in these biofilms that deserves further confirmation. The nifH gene was detected after nested PCR, and no signal was detected for the anammox-specific genes used. The taxonomic composition of denitrifying and nitrogen-fixing genes was further explored by cloning and sequencing. Interestingly, both microbial functional groups were richer and more genetically diverse than expected. The nirK gene, mostly related to Alphaproteobacteria (Bradyrhizobiaceae), dominated the denitrifying gene pool as expected for oxygen-exposed habitats, whereas Deltaproteobacteria (Geobacter like) and Cyanobacteria were the most abundant among nitrogen fixers. Overall, these results suggest an epilithic community more metabolically diverse than previously thought and with the potential to carry out an active role in the biogeochemical nitrogen cycling of high-altitude ecosystems. Measurements of activity rates should be however carried out to substantiate and further explore these findings.  相似文献   

19.
Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte‐rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were dominated by Stramenopiles (i.e. diatoms). For both the prokaryotes and eukaryotes, the epipsammon were consistently the most diverse communities and the epiphytic communities were generally similar among the four macrophyte species. However, the communities on the least complex macrophyte, Sparganium emersum, had the lowest richness and evenness and fewest unique OTUs, whereas the macrophyte with the most morphological complexity, Callitriche spp., had the highest number of unique OTUs. In general, the microbial taxa were ubiquitously distributed across the relatively homogeneous Danish landscape as determined by measuring the similarity among communities (i.e. Sørensen similarity index). Furthermore, we found significant correlations between microbial diversity (i.e. Chao1 rarefied richness and Pielou's evenness) and biofilm structure and function (i.e. C:N ratio and ammonium uptake efficiency, respectively); communities with higher richness and evenness had higher C:N ratios and lower uptake efficiency. In addition to describing the prokaryotic and eukaryotic community composition in stream biofilms, our study indicates that 1) physical habitat characteristics influence microbial diversity and 2) the variation in microbial diversity may dictate the structural and functional characteristics of stream biofilm communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号