首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abiotic stresses are the major concern in recent years as their effect on world food production is constantly increasing. We have obtained salt tolerant Arabidopsis lines overexpressing SaRBP1 (Suaeda asparagoides RNA binding protein 1) of a Korean halophyte, S. asparagoides. Homozygous T3 Arabidopsis transgenic lines were developed and used for salt stress tolerance studies. The transgenic seedlings displayed tolerance to salt and mannitol compared to the wild type (WT) seedlings. Transgenic lines produced longer primary roots, more fresh weight, and higher number of lateral roots than WT. In planta stress tolerance assay results showed that the survival rates of transgenic plants were significantly higher than WT plants. Transgenic lines showed delayed germination under 200 mM NaCl stress. In addition, the transgenics showed higher water retention ability than WT. Subcellular localization results revealed that SaRBP1 was targeted to the cytoplasm. Northwestern blot analysis results confirmed the RNA binding property of SaRBP1. Quantitative Real-Time Polymerase Chain Reaction results revealed that many stress marker genes were upregulated by SaRBP1 overexpression. Thus, our data demonstrate that SaRBP1 overexpression lines are tolerant to salt stress. Hence, this is the first report for the functional characterization of SaRBP1, a novel RBP gene isolated from S. asparagoides cDNA library.  相似文献   

2.
3.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   

4.
5.
Soil salinity represents a major constraint on plant growth. Here, we report that the over-expression of the Chrysanthemum crassum plasma membrane Na+/H+ antiporter gene CcSOS1, driven by the CaMV 35S promoter, improved the salinity tolerance of chrysanthemum ‘Jinba’. In salinity-stressed transgenic plants, both the proportion of the leaf area suffering damage and the electrical conductivity of the leaf were lower in the transgenic lines than in salinity-stressed wild type plants. After a 6 day exposure to 200 mM NaCl, the leaf content of both chlorophyll (a+b) and proline was higher in the transgenic than in the wild type plants. The activity of both superoxide dismutase and peroxidase was higher in the transgenic than in the wild type plants throughout the period of NaCl stress. The transgenic plants had a stronger control over the ingress of Na+ into the plant, particularly with respect to the youngest leaves, and so maintained a more favorable K+/Na+ ratio. The result suggests that a possible strategy for improving the salinity tolerance of chrysanthemum could target the restriction of Na+ accumulation. This study is the first to report the transgenic expression of a Na+ efflux carrier in chrysanthemum.  相似文献   

6.
New multiple-stress related gene isolated from sweet potato and designated it as MusI (multiple stress responsible gene I). Sequence analysis revealed that its full length cDNA was 998 bp long and included a 717 bp open reading frame encoding for 238 amino acids. Comparison of its cDNA and genomic DNA sequence showed that 3 exons were divided by 2 introns in its ORF region. Its deduced amino acid sequence contained a conserved rubber elongation factor (REF) domain and showed high homology with many stress-related proteins. Therefore, it was named MuSI (multiple stress responsible gene I). Southern hybridization analysis indicated that the MuSI gene may belong to a multi-gene family. Expression pattern of the MuSI gene showed that it was differently expressed among roots, stems, leaves, and flowers of a sweet potato, and its expression level was especially high in flowers and white fibrous roots. Its expression was also highly induced by various stress signals including dehydration, high salt, heavy metal, oxidation, and plant hormones. Stress tolerance experiment using transgenic plants overexpressing the MuSI gene showed that all independent transgenic tobacco lines have enhanced tolerance to high temperature stress. Among them, transgenic line 6 particularly showed tolerance to salt, heavy metal, and osmotic stress as well. These results suggest that the MuSI gene functions as a positive regulator of various stress responses and may be useful in improving stress tolerance of transgenic plants.  相似文献   

7.
Bacterial mannitol 1-phosphate dehydrogenase (mtlD) gene was introduced into potato (Solanum tuberosum L.) by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were selected on a medium containing 100 mg l−1 kanamycin and confirmed by polymerase chain reaction (PCR), Southern blotting, and RT-PCR analyses. All of the selected transformants accumulated mannitol, a sugar alcohol that is not found in wildtype potato. Experiments designed for testing salt tolerance revealed that there was enhanced NaCl tolerance of the transgenic lines both in vitro and in hydroponic culture. Compared to 0 mM NaCl, the shoot fresh weight of wildtype plants was reduced by 76.5% at 100 mM NaCl under hydroponic conditions. However, under the same condition, the shoot fresh weight of transgenic plants was reduced only by 17.3%, compared to 0 mM NaCl treatment. The improved tolerance of this transgenic line may be attributed to the induction and progressive accumulation of mannitol in the roots and shoots of the plants. In contrast to in vitro experiments, the mannitol content in the transgenic roots and shoots increased at 50 mM NaCl and decreased slightly at 75 and 100 mM NaCl, respectively. Overall, the amount of accumulated mannitol in the transgenic lines was too small to act as an osmolyte; thus, it might act as an osmoprotectant. However, the results demonstrated that mannitol had more contribution to osmotic adjustment in the roots (but not in shoots). Finally, we concluded that mtlD expression in transgenic potato plants can significantly increase the mannitol accumulation that contributes to the enhanced tolerance to NaCl stress. Furthermore, although this enhanced tolerance resulted mainly from an osmoprotectant action, an osmoregulatory effect could not be ruled out.  相似文献   

8.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

9.
A GSK3/shaggy-like kinase (AtGSK1) has been implicated in the regulation of drought and salt tolerance. We transferred AtGSK1 from Arabidopsis thaliana to a hybrid poplar (Populus alba × P. tremula var. grandulosa) to determine the effect of the transgene expression in the transgenic trees. The results from northern blot and RT-PCR analyses showed that the expression level varied among the transgenic lines. During their culture on tissue culture media, the transgenic poplars formed vigorous growing roots even in the presence of 125 mM NaCl and callus in the presence of 150 mM NaCl. When the transgenic poplars were growing in pots and provided with NaCl solution, they stayed much healthier than did nontransgenic poplars, showing higher rates of photosynthetic rates, stomatal conductance, and evaporation rates under the stress. Whereas the total level of leaf Na+ level increased dramatically in transgenic poplars under severe saline conditions (150 mM NaCl), that of leaf K+ decreased in the same plants under the same conditions. Total root Na+ level increased in nontransgenic poplars under severe saline conditions. In contrast, total root K+ level decreased in the same plants under the same conditions. The chloride content and relative electrical conductivity of the transgenic poplars after salt stress treatment were lower than those of nontransgenic poplars. The transgenic poplars were also tolerant to up to 20 % PEG remaining significantly healthy when compared with nontransgenic poplars with necrosis and chlorosis symptoms. Another dramatic feature of the transgenic poplars was wilting tolerance for prolonged drought treatment up to 2 weeks. The results provide evidence that the expression of AtGSK1 gene conferred drought and salt tolerance in the transgenic poplars.  相似文献   

10.
The exact mechanism of helicase-mediated salinity tolerance is not yet understood. We have isolated a DESD-box containing cDNA from Pisum sativum (Pea) and named it as PDH45. It is a unique member of DEAD-box helicase family; containing DESD instead of DEAD/H. PDH45 overexpression driven by constitutive cauliflower mosaic virus-35S promoter in rice transgenic [Oryza sativa L. cv. Pusa Basmati 1 (PB1)] plants confers salinity tolerance by improving the photosynthesis and antioxidant machinery. The Na+ ion concentration and oxidative stress parameters in leaves of the NaCl (0, 100 or 200 mM) treated PDH45 overexpressing T1 transgenic lines were lower as compared to wild type (WT) rice plants under similar conditions. The 200 mM NaCl significantly reduced the leaf area, plant dry mass, net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci), chlorophyll (Chl) content in WT plants as compared to the transgenics. The T1 transgenics exhibited higher glutathione (GSH) and ascorbate (AsA) contents under salinity stress. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were significantly higher in transgenics; suggesting the existence of an efficient antioxidant defence system to cope with salinity induced-oxidative damage. Yeast two-hybrid assay indicated that the PDH45 protein interacts with Cu/Zn SOD, adenosine-5′-phosphosulfate-kinase, cysteine proteinase and eIF(4G), thus confirming the involvement of ROS scavenging machinery in the transgenic plants to provide salt tolerance. Furthermore, the T2 transgenics were also able to grow, flower, and set viable seeds under continuous salinity stress of 200 mM NaCl. This study provides insights into the mechanism of PDH45 mediated salinity stress tolerance by controlling the generation of stress induced reactive oxygen species (ROS) and also by protecting the photosynthetic machinery through a strengthened antioxidant system.  相似文献   

11.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

12.
We expressed the AtMT2b gene under the 35 S cauliflower mosaic virus promoter in Nicotiana tabacum (Sr1), using leaf disc transformation. Arsenite tolerance and uptake, as well as arsenite-induced phytochelatin (PC) accumulation in roots were measured in transgenic lines, and compared to untransformed (‘wild type’) tobacco. Measured after 5 days of exposure, arsenite tolerance was slightly but significantly decreased in the transgenic lines compared to wild type. The highest AtMT2b expressing line exhibited a significantly decreased arsenic accumulation in roots, but an increased accumulation in shoots, while the total amount of arsenic taken up remained unchanged, suggesting that AtMT2b expression enhanced the arsenic root to shoot transport. The same transformant line also exhibited a decreased rate of phytochelatin accumulation in the roots, but the phytochelatin-SH to As molar ratio was higher than in wild type, suggesting that the lower arsenite tolerance in the transformant lines was not due to a potential shortage of cysteine for PC synthesis, imposed by expression of the transgene.  相似文献   

13.
A cDNA for the gene ZFP182, encoding a C2H2-type zinc finger protein, was cloned from rice by RT-PCR. ZFP182 codes an 18.2 kDa protein with two C2H2-type zinc finger motifs, one nuclear localization signal and one Leu-rich domain. The DLN-box/EAR-motif, which exists in most of plant C2H2-type zinc finger proteins, does not exist in ZFP182. The expression analysis showed that ZFP182 gene was constitutively expressed in leaves, culms, roots and spikes at the adult rice plants, and markedly induced in the seedlings by cold (4 °C), 150 mM NaCl and 0.1 mM ABA treatments. The approximate 1.4 kb promoter region of ZFP182 gene was fused into GUS reporter gene and transformed into tobacco. The histochemical analysis revealed that GUS expression could not be detected in transformed tobacco seedlings under normal conditions, but strongly observed in tobacco leaf discs and the vascular tissue of roots treated with NaCl or KCl. Expression of ZFP182 in transgenic tobacco and overexpression in rice increased plant tolerance to salt stress. These results demonstrated that ZFP182 might be involved in plant responses to salt stress.  相似文献   

14.
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.  相似文献   

15.
16.
Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.  相似文献   

17.
18.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   

19.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

20.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号