首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  相似文献   

2.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  相似文献   

3.
Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism for studying fundamental cellular processes across the eukaryotic kingdom including man. In this respect, complementation assays, in which the yeast protein is replaced by a homologous protein from another organism, have been very instructive. A newer trend is to use the yeast cell factory as a toolbox to understand cellular processes controlled by proteins for which the yeast lacks functional counterparts. An increasing number of studies have indicated that S. cerevisiae is a suitable model system to decipher molecular mechanisms involved in a variety of neurodegenerative disorders caused by aberrant protein folding. Here we review the current knowledge gained by the use of so-called humanized yeasts in the field of Huntington's, Parkinson's and Alzheimer's diseases.  相似文献   

4.
5.
The possibility of combining powerful genetic methods with biochemical analysis has made baker's yeast Saccharomyces cerevisiae the organism of choice to study the complex process of translation initiation in eukaryotes. Several new initiation factor genes and interactions between components of the translational machinery that were not predicted by current models have been revealed by genetic analysis of extragenic suppressors of translational initiation mutants. In addition, a yeast cell-free translation system has been developed that allows in vivo phenotypes to be correlated with in vitro biochemical activities. We summarize here the current view of yeast translational initiation obtained by these approaches.  相似文献   

6.
Eukaryotic cells are able to mount several genetically complex cellular responses to DNA damage. The yeast Saccharomyces cerevisiae is a genetically well characterized organism that is also amenable to molecular and biochemical studies. Hence, this organism has provided a useful and informative model for dissecting the biochemistry and molecular biology of DNA repair in eukaryotes.  相似文献   

7.
P James  B D Hall  S Whelen  E A Craig 《Gene》1992,122(1):101-110
In higher eukaryotic organisms, the regulation of tyrosine phosphorylation is known to play a major role in the control of cell division. Recently, a wide variety of protein tyrosine phosphatase (PTPase)-encoding genes (PTPs) have been identified to accompany the many tyrosine kinases previously studied. However, in the yeasts, where the cell cycle has been most extensively studied, identification of the genes involved in the direct regulation of tyrosine phosphorylation has been difficult. We have identified a pair of genes in the yeast Saccharomyces cerevisiae, which we call PTP1 and PTP2, whose products are highly homologous to PTPases identified in other systems. Both genes are poorly expressed, and contain sequence elements consistent with low-abundance proteins. We have carried out an extensive genetic analysis of PTP1 and PTP2, and found that they are not essential either singly or in combination. Neither deletion nor overexpression results in any strong phenotypes in a number of assays. Deletions also do not affect the mitotic blockage caused by deletion of the MIH1 gene (encoding a positive regulator of mitosis) and induction of the heterologous Schizosaccharomyces pombe wee1+ gene (encoding a negative regulator of mitosis). Molecular analysis has shown that PTP1 and PTP2 are quite different structurally and are not especially well conserved at the amino acid sequence level. Low-stringency Southern blots indicate that yeast may contain a family of PTPase-encoding genes. These results suggest that yeast may contain other PTPase-encoding genes that overlap functionally with PTP1 and PTP2.  相似文献   

8.
The budding yeast Saccharomyces cerevisiae has been an excellent genetic and biochemical model for our understanding of homologous recombination. Central to the process of homologous recombination are the products of the RAD52 epistasis group of genes, whose functions we now know include the nucleolytic processing of DNA double-stand breaks, the ability to conduct a DNA homology search, and the capacity to promote the exchange of genetic information between homologous regions on recombining chromosomes. It is also clear that the basic functions of the RAD52 group of genes have been highly conserved among eukaryotes. Disruption of this important process causes genomic instability, which can result in a number of unsavory consequences, including tumorigenesis and cell death.  相似文献   

9.
Although RNA-mediated interference (RNAi) is a widely conserved process among eukaryotes, including many fungi, it is absent from the budding yeast Saccharomyces cerevisiae. Three human proteins, Ago2, Dicer and TRBP, are sufficient for reconstituting the RISC complex in vitro. To examine whether the introduction of human RNAi genes can reconstitute RNAi in S. cerevisiae, genes encoding these three human proteins were introduced into S. cerevisiae. We observed both siRNA and siRNA- and RISC-dependent silencing of the target gene GFP. Thus, human Ago2, Dicer and TRBP can functionally reconstitute human RNAi in S. cerevisiae, in vivo, enabling the study and use of the human RNAi pathway in a facile genetic model organism.  相似文献   

10.
11.
Non-conventional yeasts as hosts for heterologous protein production.   总被引:4,自引:0,他引:4  
Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.  相似文献   

12.
Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.  相似文献   

13.
14.
Molecular display systems using yeast have been developed for industrial, medical, pharmaceutical, and biological studies. Although several host cells are available to construct a molecular display system, the yeast Saccharomyces cerevisiae is a well-established and convenient organism in eukaryotes. A wide variety of prokaryotic and eukaryotic proteins have been displayed on yeast cell surfaces. In addition, functional analyses and applications to bioconversion have been performed on the cell surface, and cells are conveniently engineered by molecular display systems. In this review, we focus on the yeast molecular display system with regard to therapeutic proteins, several enzymes, and food ingredients. In addition, recent patents on molecular display using yeast cell for production of those compounds, screening technology and related techniques are introduced. Development of devices for functional analysis of created and modified proteins in the yeast display system is also described.  相似文献   

15.
The well-established method for high-throughput construction of an expression system of the yeast Saccharomyces cerevisiae uses homologous recombination between an expression plasmid and a target gene (with homologous regions of the plasmid on both ends added by PCR). This method has been widely used for membrane proteins using plasmids containing GFP, and has been successfully used to investigate the cellular localization and solubilization conditions of the proteins. Although the methanol-utilizing yeast Pichia pastoris is known as an excellent expression host, a method for high-throughput construction of an expression system like that in S. cerevisiae has not been reported. In this study, we have attempted to construct expression systems via homologous recombination in P. pastoris. The insertion of genes into a plasmid could be easily checked by colony-PCR. Expression systems for seven membrane proteins of medaka fish (Oryzias latipes) and yeast (S. cerevisiae) were constructed, and the expression of proteins was analyzed by fluorescence spectra, fluorescence microscopy, and SDS-PAGE (in-gel fluorescence detection).  相似文献   

16.
Prohibitins in eukaryotes consist of two subunits (PHB1 and PHB2) that together form a high molecular weight complex in the mitochondrial inner membrane. The evolutionary conservation and the ubiquitous expression in mammalian tissues of the prohibitin complex suggest an important function among eukaryotes. The PHB complex has been shown to play a role in the stabilization of newly synthesized subunits of mitochondrial respiratory enzymes in the yeast Saccharomyces cerevisiae. We have used Caenorhabditis elegans as model system to study the role of the PHB complex during development of a multicellular organism. We demonstrate that prohibitins in C. elegans form a high molecular weight complex in the mitochondrial inner membrane similar to that of yeast and humans. By using RNA-mediated gene inactivation, we show that PHB proteins are essential during embryonic development and are required for somatic and germline differentiation in the larval gonad. We further demonstrate that a deficiency in PHB proteins results in altered mitochondrial biogenesis in body wall muscle cells. This paper reports a strong loss of function phenotype for prohibitin gene inactivation in a multicellular organism and shows for the first time that prohibitins serve an essential role in mitochondrial function during organismal development.  相似文献   

17.
Abstract Protein phosphorylation is an important regulatory phenomenon in yeasts just as in other eukaryotic cells and controls a wide variety of cellular processes. The importance of protein phosphatases as well as protein kinases as key elements in such control is becoming increasingly clear. Over the past four years since the first yeast protein phosphatase gene was isolated, many more such genes have been described and the number of genes encoding protein phosphatase catalytic subunits in Saccharomyces cerevisiae has comfortably entered double figures. Given the genetic approaches available, yeasts offer powerful systems for addressing the cellular roles of these enzymes. This review summarises the results of genetic studies aimed at determining the functions of protein serine/threoninc phosphatases in yeast.  相似文献   

18.
Saccharomyces cerevisiae yeasts (lower eukaryotes) were shown to produce a protein exometabolite with reactivation activity. We demonstrated cross-effects of extracellular protein factors of adaptation to stress (heat and UV irradiation) in yeasts and Luteococcus casei bacteria. The possibility for isolation and partial purification of protein exometabolites from the culture liquid of yeasts and bacteria by similar methods, as well as the similarity of elution profiles for the active proteins in high-performance liquid chromatography, suggests that the proteins (or fragments thereot) of the organisms studied are homologous.  相似文献   

19.
A number of cyclins have been described, most of which act together with their catalytic partners, the cyclin-dependent kinases (Cdks), to regulate events in the eukaryotic cell cycle. Cyclin C was originally identified by a genetic screen for human and Drosophila cDNAs that complement a triple knock-out of the CLN genes in Saccharomyces cerevisiae. Unlike other cyclins identified in this complementation screen, there has been no evidence that cyclin C has a cell-cycle role in the cognate organism. Here we report that cyclin C is a nuclear protein present in a multiprotein complex. It interacts both in vitro and in vivo with Cdk8, a novel protein-kinase of the Cdk family, structurally related to the yeast Srb10 kinase. We also show that Cdk8 can interact in vivo with the large subunit of RNA polymerase II and that a kinase activity that phosphorylates the RNA polymerase II large subunit is present in Cdk8 immunoprecipitates. Based on these observations and sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, we suggest that cyclin C and Cdk8 control RNA polymerase II function.  相似文献   

20.
The budding yeast Saccharomyces cerevisiae responds to intracellular and extracellular cues to direct cell growth. Genetic analysis has revealed many components that participate in this process and has provided insight into the mechanisms by which these proteins function. Several of these components, such as the septins, pheromone receptors and GTPase proteins, have homologues in multicellular eukaryotes, suggesting that many aspects of polarized cell growth may be conserved throughout evolution. This review discusses our current understanding of the molecular mechanisms of growth-site selection during the different stages of the yeast life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号