共查询到20条相似文献,搜索用时 15 毫秒
1.
PTEN is a 3'-inositol lipid phosphatase that dephosphorylates products of PI 3-kinase. Since PI 3-kinase is required for many metabolic actions of insulin, we investigated the role of PTEN in insulin-stimulated translocation of GLUT4. In control rat adipose cells, we observed a approximately 2-fold increase in cell surface GLUT4 upon maximal insulin stimulation. Overexpression of wild-type PTEN abolished this response to insulin. Translocation of GLUT4 in cells overexpressing PTEN mutants without lipid phosphatase activity was similar to that observed in control cells. Overexpression of PTEN-CBR3 (mutant with disrupted membrane association domain) partially impaired translocation of GLUT4. In Cos-7 cells, overexpression of wild-type PTEN had no effect on ERK2 phosphorylation in response to acute insulin stimulation. However, Elk-1 phosphorylation in response to chronic insulin treatment was significantly decreased. Thus, when PTEN is overexpressed, both its lipid phosphatase activity and subcellular localization play a role in antagonizing metabolic actions of insulin that are dependent on PI 3-kinase but independent of MAP kinase. However, because translocation of GLUT4 in cells overexpressing a dominant inhibitory PTEN mutant (C124S) was similar to that of control cells, we conclude that endogenous PTEN may not modulate metabolic functions of insulin under normal physiological conditions. 相似文献
2.
Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport 总被引:7,自引:0,他引:7
Somwar R Niu W Kim DY Sweeney G Randhawa VK Huang C Ramlal T Klip A 《The Journal of biological chemistry》2001,276(49):46079-46087
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin. 相似文献
3.
Action of insulin receptor substrate-3 (IRS-3) and IRS-4 to stimulate translocation of GLUT4 in rat adipose cells 总被引:6,自引:0,他引:6
Zhou L Chen H Xu P Cong LN Sciacchitano S Li Y Graham D Jacobs AR Taylor SI Quon MJ 《Molecular endocrinology (Baltimore, Md.)》1999,13(3):505-514
The insulin receptor initiates insulin action by phosphorylating multiple intracellular substrates. Previously, we have demonstrated that insulin receptor substrates (IRS)-1 and -2 can mediate insulin's action to promote translocation of GLUT4 glucose transporters to the cell surface in rat adipose cells. Although IRS-1, -2, and -4 are similar in overall structure, IRS-3 is approximately 50% shorter and differs with respect to sites of tyrosine phosphorylation. Nevertheless, as demonstrated in this study, both IRS-3 and IRS-4 can also stimulate translocation of GLUT4. Rat adipose cells were cotransfected with expression vectors for hemagglutinin (HA) epitope-tagged GLUT4 (GLUT4-HA) and human IRS-1, murine IRS-3, or human IRS-4. Overexpression of IRS-1 led to a 2-fold increase in cell surface GLUT4-HA in cells incubated in the absence of insulin; overexpression of either IRS-3 or IRS-4 elicited a larger increase in cell surface GLUT4-HA. Indeed, the effect of IRS-3 in the absence of insulin was approximately 40% greater than the effect of a maximally stimulating concentration of insulin in cells not overexpressing IRS proteins. Because phosphatidylinositol (PI) 3-kinase is essential for insulin-stimulated translocation of GLUT4, we also studied a mutant IRS-3 molecule (IRS-3-F4) in which Phe was substituted for Tyr in all four YXXM motifs (the phosphorylation sites predicted to bind to and activate PI 3-kinase). Interestingly, overexpression of IRS-3-F4 did not promote translocation of GLUT4-HA, but actually inhibited the ability of insulin to stimulate translocation of GLUT4-HA to the cell surface. Our data suggest that IRS-3 and IRS-4 are capable of mediating PI 3-kinase-dependent metabolic actions of insulin in adipose cells, and that IRS proteins play a physiological role in mediating translocation of GLUT4. 相似文献
4.
In adipose cells, insulin induces the translocation of GLUT4 by stimulating their exocytosis from a basal intracellular compartment to the plasma membrane. Increasing overexpression of a hemagglutinin (HA) epitope-tagged GLUT4 in rat adipose cells results in a roughly proportional increase in cell surface HA-GLUT4 levels in the basal state, accompanied by a marked reduction of the fold HA-GLUT4 translocation in response to insulin. Using biochemical methods and cotransfection experiments with differently epitope-tagged GLUT4, we show that overexpression of GLUT4 does not affect the intracellular sequestration of GLUT4 in the absence of insulin, but rather reduces the relative insulin-stimulated GLUT4 translocation to the plasma membrane. In contrast, overexpression of GLUT1 does not interfere with the targeting of GLUT4 and vice versa. These results suggest that the mechanism involved in the intracellular sequestration of GLUT4 has a high capacity whereas the mechanism for GLUT4 translocation is readily saturated by overexpression of GLUT4, implicating an active translocation machinery in the exocytosis of GLUT4. 相似文献
5.
Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells 总被引:14,自引:0,他引:14
G Baldini R Hohman M J Charron H F Lodish 《The Journal of biological chemistry》1991,266(7):4037-4040
Rat adipose cells treated with Staphylococcus aureus alpha-toxin are permeable and retain their ability to respond to insulin after hormone treatment. The GLUT 4 glucose transporter isoform, specific to fat and muscle cells, is translocated normally from low density microsomes to the plasma membrane in permeabilized cells. Addition of guanosine 5'-O-(3-thiotriphosphate), guanylyl imidodiphosphate, or guanylyl beta, gamma-methylenediphosphate to permeabilized adipocytes induces an insulin-like translocation of GLUT 4 to the plasma membrane; GTP or adenosine 5'-(beta, gamma-imino)triphosphate has no effect. No translocation of GLUT 4 is observed when GTP analogs are added to intact adipocytes. These results suggest the involvement of a GTP-binding protein in insulin-triggered recruitment of GLUT 4 to the cell surface. 相似文献
6.
Cong LN Chen H Li Y Lin CH Sap J Quon MJ 《Biochemical and biophysical research communications》1999,255(2):200-207
Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two transmembrane PTPases) in this metabolic action of insulin. Rat adipose cells were transfected with either PTP-alpha or PTP-kappa and effects of these PTPases on the translocation of a cotransfected epitope-tagged GLUT4 were studied. Cells overexpressing wild-type PTP-alpha had significantly lower levels of cell surface GLUT4 in response to insulin and a threefold decrease in insulin sensitivity when compared with control cells expressing only tagged GLUT4. Co-overexpression of PTP-alpha and PTP1B did not have additive effects, suggesting that these PTPases share common substrates. Cells overexpressing either wild-type PTP-kappa or catalytically inactive mutants of PTP-alpha had dose-response curves similar to those of control cells. Since overexpression of PTP-alpha, but not PTP-kappa, had effects on translocation of GLUT4, our data suggest that PTPalpha may be a specific negative modulator of insulin-stimulated glucose transport. 相似文献
7.
C.N. Vishnu Prasad 《FEBS letters》2010,584(3):531-5330
GLUT4, a 12 transmembrane protein, plays a major role in insulin mediated glucose transport in muscle and adipocytes. For glucose transport, the GLUT4 protein needs to be translocated to the plasma membrane from the intracellular pool and it is possible that certain compounds may be able to enhance this process. In the present work, we have shown that gallic acid can increase GLUT4 translocation and glucose uptake activity in an Akt-independent but wortmannin-sensitive manner. Further analysis suggested the role of atypical protein kinase Cζ/λ in gallic acid mediated GLUT4 translocation and glucose uptake. 相似文献
8.
Imamura T Ishibashi K Dalle S Ugi S Olefsky JM 《The Journal of biological chemistry》1999,274(47):33691-33695
Endothelin-1 (ET-1) can stimulate insulin-responsive glucose transporter (GLUT4) translocation in 3T3-L1 adipocytes (Wu-Wong, J. R., Berg, C. E., Wang, J., Chiou, W. J., and Fissel, B. (1999) J. Biol. Chem. 274, 8103-8110), and in the current study, we have evaluated the signaling pathway leading to this response. First, we inhibited endogenous Galpha(q/11) function by single-cell microinjection using anti-Galpha(q/11) antibody or RGS2 protein (a GTPase activating protein for Galpha(q)) followed by immunostaining to quantitate GLUT4 translocation in 3T3-L1 adipocytes. ET-1-stimulated GLUT4 translocation was markedly decreased by 70 or 75% by microinjection of Galpha(q/11) antibody or RGS2 protein, respectively. Pretreatment of cells with the Galpha(i) inhibitor (pertussis toxin) or microinjection of a Gbetagamma inhibitor (glutathione S-transferase-beta-adrenergic receptor kinase (GST-BARK)) did not inhibit ET-1-induced GLUT4 translocation, indicating that Galpha(q/11 )mediates ET-1 signaling to GLUT4 translocation. Next, we found that ET-1-induced GLUT4 translocation was inhibited by the phosphatidylinositol (PI) 3-kinase inhibitors wortmannin or LY294002, but not by the phospholipase C inhibitor U-73122. ET-1 stimulated the PI 3-kinase activity of the p110alpha subunit (5.5-fold), and microinjection of anti-p110alpha or PKC-lambda antibodies inhibited ET-stimulated GLUT4 translocation. Finally, we found that Galpha(q/11) formed immunocomplexes with the type-A endothelin receptor and the 110alpha subunit of PI 3-kinase and that ET-1 stimulation enhances tyrosine phosphorylation of Galpha(q/11). These results indicate that: 1) ET-1 signaling to GLUT4 translocation is dependent upon Galpha(q/11) and PI 3-kinase; and 2) Galpha(q/11) can transmit signals from the ET(A) receptor to the p110alpha subunit of PI 3-kinase, as does insulin, subsequently leading to GLUT4 translocation. 相似文献
9.
Berenguer M Zhang J Bruce MC Martinez L Gonzalez T Gurtovenko AA Xu T Le Marchand-Brustel Y Govers R 《Biochimie》2011,93(4):697-709
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis. 相似文献
10.
C.N. Vishnu Prasad 《Biochemical and biophysical research communications》2009,380(1):39-43
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport. 相似文献
11.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes. 相似文献
12.
Macaulay SL Grusovin J Stoichevska V Ryan JM Castelli LA Ward CW 《FEBS letters》2002,528(1-3):154-160
Munc18c has been shown to bind syntaxin 4 and to play a role in GLUT4 translocation and glucose transport, although this role is as yet poorly defined. In the present study, the effects of modulating the available level of munc18c on glucose transport and GLUT4 translocation were examined. Over-expression of munc18c in 3T3L1 adipocytes inhibited insulin-stimulated glucose transport by approximately 50%. Basal glucose transport rates were also decreased by approximately 25%. In contrast, microinjection of a munc18c polyclonal antibody stimulated GLUT4 translocation by approximately 60% over basal levels without affecting insulin-stimulated GLUT4 levels. Microinjection of a control antibody had no effect. These data are consistent with the likelihood that antibody microinjection sequesters munc18c enabling translocation/fusion of GLUT4 vesicles. Mutagenesis of a potential proline-directed kinase phosphorylation site in munc18c, T569, that in previous studies of its neuronal counterpart munc18a caused its dissociation from its complex with syntaxin 1a, had no effect on munc18c's association with syntaxin 4 or its inhibition of glucose transport, indicative that phosphorylation of this residue is not important for insulin regulation of glucose transport. The over-expression and microinjection sequestration data support an inhibitory role for munc18c on translocation/fusion of GLUT4 vesicles. They further show that altering the level of available munc18c in 3T3L1 cells can modulate glucose transport rates, indicating its potential as a target for therapeutics in diabetes. 相似文献
13.
Muscle and fat cells translocate GLUT4 (glucose transporter 4) to the plasma membrane when stimulated by insulin. Usually, this event is measured in differentiated adipocytes, myotubes, or cell lines overexpressing tagged GLUT4 by immunostaining. However, measurement of the translocation in differentiated adipocytes or myotubes or GLUT4 overexpressing cell lines is difficult because of high assay variability caused by either the differentiation protocol or low assay sensitivity. We recently reported the identification of a novel splice variant of AS160 (substrate of 160 kDa), namely AS160_v2, and showed that its coexpression with GLUT4 in L6 myoblasts increased the insulin-stimulated glucose uptake rate due to an increased amount of GLUT4 on the cell surface. L6 cells, which coexpress myc-tagged GLUT4 and AS160_v2, can be efficiently used to generate an assay useful for identifying compounds that affect cellular responses to insulin. We compared the EC50 values for radioactive glucose uptake and GLUT4 translocation of different insulins and several small molecules to validate the assay. The use of L6 cells overexpressing AS160_v2 can be considered as a novel tool for the characterization of molecules modulating insulin signaling and GLUT4 translocation, and an image-based assay increases our confidence in the mode of action of the compounds identified. 相似文献
14.
Mora S Durham PL Smith JR Russo AF Jeromin A Pessin JE 《The Journal of biological chemistry》2002,277(30):27494-27500
Expression of NCS-1 (neuronal calcium sensor-1, also termed frequenin) in 3T3L1 adipocytes strongly inhibited insulin-stimulated translocation of GLUT4 and insulin-responsive aminopeptidase. The effect of NCS-1 was specific for GLUT4 and the insulin-responsive aminopeptidase translocation as there was no effect on the trafficking of the cation-independent mannose 6-phosphate receptor or the GLUT1 glucose transporter isoform. Moreover, NCS-1 showed partial colocalization with GLUT4-EGFP in the perinuclear region. The inhibitory action of NCS-1 was independent of calcium sequestration since neither treatment with ionomycin nor endothelin-1, both of which elevated the intracellular calcium concentration, restored insulin-stimulated GLUT4 translocation. Furthermore, NCS-1 did not alter the insulin-stimulated protein kinase B (PKB/Akt) phosphorylation or the recruitment of Cbl to the plasma membrane. In contrast, expression of the NCS-1 effector phosphatidylinositol 4-kinase (PI 4-kinase) inhibited insulin-stimulated GLUT4 translocation, whereas co-transfection with an inactive PI 4-kinase mutant prevented the NCS-1-induced inhibition. These data demonstrate that PI 4-kinase functions to negatively regulate GLUT4 translocation through its interaction with NCS-1. 相似文献
15.
Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells 总被引:11,自引:0,他引:11
Lizunov VA Matsumoto H Zimmerberg J Cushman SW Frolov VA 《The Journal of cell biology》2005,169(3):481-489
Glucose transport in adipose cells is regulated by changing the distribution of glucose transporter 4 (GLUT4) between the cell interior and the plasma membrane (PM). Insulin shifts this distribution by augmenting the rate of exocytosis of specialized GLUT4 vesicles. We applied time-lapse total internal reflection fluorescence microscopy to dissect intermediates of this GLUT4 translocation in rat adipose cells in primary culture. Without insulin, GLUT4 vesicles rapidly moved along a microtubule network covering the entire PM, periodically stopping, most often just briefly, by loosely tethering to the PM. Insulin halted this traffic by tightly tethering vesicles to the PM where they formed clusters and slowly fused to the PM. This slow release of GLUT4 determined the overall increase of the PM GLUT4. Thus, insulin initially recruits GLUT4 sequestered in mobile vesicles near the PM. It is likely that the primary mechanism of insulin action in GLUT4 translocation is to stimulate tethering and fusion of trafficking vesicles to specific fusion sites in the PM. 相似文献
16.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2020,1867(3):118562
During stress conditions such as pressure overload and acute ischemia, the myocardial endothelium releases neuregulin-1β (NRG-1), which acts as a cardioprotective factor and supports recovery of the heart. Recently, we demonstrated that recombinant human (rh)NRG-1 enhances glucose uptake in neonatal rat ventricular myocytes via the ErbB2/ErbB4 heterodimer and PI3Kα. The present study aimed to further elucidate the mechanism whereby rhNRG-1 activates glucose uptake in comparison to the well-established insulin and to extend the findings to adult models. Combinations of rhNRG-1 with increasing doses of insulin did not yield any additive effect on glucose uptake measured as 3H-deoxy-d-glucose incorporation, indicating that the mechanisms of the two stimuli are similar. In c-Myc-GLUT4-mCherry-transfected neonatal rat cardiomyocytes, rhNRG-1 increased sarcolemmal GLUT4 by 16-fold, similar to insulin. In contrast to insulin, rhNRG-1 did not phosphorylate IRS-1 at Tyr612, indicating that IRS-1 is not implicated in the signal transmission. Treatment of neonatal rats with rhNRG-1 induced a signaling response comparable with that observed in vitro, including increased ErbB4-pTyr1284, Akt-pThr308 and Erk1/2-pThr202/Tyr204. In contrast, in adult cardiomyocytes rhNRG-1 only increased the phosphorylation of Erk1/2 without having any significant effect on Akt and AS160 phosphorylation and glucose uptake, suggesting that rhNRG-1 function in neonatal cardiomyocytes differs from that in adult cardiomyocytes. In conclusion, our results show that similar to insulin, rhNRG-1 can induce glucose uptake by activating the PI3Kα-Akt-AS160 pathway and GLUT4 translocation. Unlike insulin, the rhNRG-1-induced effect is not mediated by IRS proteins and is observed in neonatal, but not in adult rat cardiomyocytes. 相似文献
17.
Anna
M. Koester Angline Geiser Kamilla
M.E. Laidlaw Silke Morris Marie
F.A. Cutiongco Laura Stirrat Nikolaj Gadegaard Eckhard Boles Hannah
L. Black Nia
J. Bryant Gwyn
W. Gould 《Bioscience reports》2022,42(7)
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane. 相似文献
18.
ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes 总被引:1,自引:0,他引:1
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport. 相似文献
19.
The molecular mechanism of insulin resistance induced by high-fructose feeding is not fully understood. The present study investigated the role of downstream signaling molecules of phosphatidylinositol 3-kinase (PI3K) in the insulin-stimulated skeletal muscle of high-fructose-fed rats. Rats were divided into chow-fed and fructose-fed groups. The results of the euglycemic clamp study (insulin infusion rates: 6 mU/kg BW/min) showed a significant decrease in the glucose infusion rate (GIR) and the metabolic clearance rate of glucose (MCR) in fructose-fed rats compared with chow-fed rats. In skeletal muscle removed immediately after the clamp procedure, high-fructose feeding did not alter protein levels of protein kinase B (PKB/Akt), protein kinase C zeta (PKCzeta), or glucose transporter 4 (GLUT4). However, insulin-stimulated phosphorylation of Akt and PKCzeta and GLUT4 translocation to the plasma membrane were reduced. Our findings suggest that insulin resistance in fructose-fed rats is associated with impaired Akt and PKCzeta activation and GLUT4 translocation in skeletal muscle. 相似文献
20.
Jung Ok Lee Soo Kyung Lee Jin Hee Jung Ji Hae Kim Ga Young You Su Jin Kim Sun Hwa Park Kyung‐Ok Uhm Hyeon Soo Kim 《Journal of cellular physiology》2011,226(4):974-981
Metformin is a major oral anti‐diabetic drug and is known as an insulin sensitizer. However, the mechanism by which metformin acts is unclear. In this study, we found that AICAR, an AMPK activator, and metformin increased the expression of Rab4 mRNA and protein levels in skeletal muscle C2C12 cells. The promoter activity of Rab4 was increased by metformin in an AMPK‐dependent manner. Metformin stimulated the phosphorylation of AS160, Akt substrate, and Rab GTPase activating protein (GAP), and also increased the phosphorylation of PKC‐zeta, which is a critical molecule for glucose uptake. Knockdown of AMPK blocked the metformin‐induced phosphorylation of AS160/PKC‐zeta. In addition, a colorimetric absorbance assay showed that insulin‐induced translocation of GLUT4 was suppressed in Rab4 knockdown cells. Moreover, Rab4 interacted with PKC‐zeta but not with GLUT4. The C‐terminal‐deleted Rab4 mutant, Rab4ΔCT, showed diffuse sub‐cellular localization, while wild‐type Rab4 localized exclusively to the perinuclear membrane. Unlike Rab4ΔCT, wild‐type Rab4 co‐localized with PKC‐zeta. Together, these results demonstrate that metformin induces Rab4 expression via AMPK‐AS160‐PKC‐zeta and modulates insulin‐mediated GLUT4 translocation. J. Cell. Physiol. 226: 974–981, 2011. © 2010 Wiley‐Liss, Inc. 相似文献