首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Affinity-purified glycopeptides were prepared from Trypanosomacruzi using the carbohydrate-specific monoclonal antibody WIC29.26.These glycopeptides contain rhamnose, fucose, xylose, and galactose,in the ratio 1:1:2:3. A series of oligosaccharides was releasedfrom the glycopeptides by mild acid hydrolysis, while, in contrast,no oligosaccharides were released by either peptide N-glycosidaseF or conventional base-catalyzed ß-elimination andreduction. This suggested the presence of a phosphodiester linkagebetween the carbohydrate and peptide, which was further supportedby the detection of phosphothreonine in the glycopeptides. Themild acid liberated (MAL) fraction was resolved into two majoracidic oligosaccharides (MAL-P1 and MAL-P2), two minor neutraloligosaccharides (MAL P1b and MAL-P2b) and a neutral fraction(MAL-N1), consisting of Gal and Xyl monosaccharides. The MAL-P1and MAL-P2 oligosaccharides proved to be hexa- and heptasaccharidesthat shared a common xylose reducing terminus, but differedby one galactofuranose residue, and their negative charge wasshown to be due to the presence of cyclic-phosphate attachedto nonreducing terminal galactofuranose residues. The MAL-P1band MAL-P2b oligosaccharides appeared to be nonphosphorylatedversions of MAL-P1 and MAL-P2. Partial structures of MAL-P1and MAL-P2 are suggested, based on compositional analyses, electrospraymass spectrometry, and tandem mass spectrometry before and afterpermethylation. The origin and significance of these uniquetrypanosomatid glycoconjugates is discussed. glycoprotein monoclonal antibody oligosaccharide structure Trapanosoma cruzi  相似文献   

6.
The oligosaccharide beta-D-Galf-(1-->3)-alpha-D-Manp-(1-->2)-[beta-D-Galf- (1-->3)]-alpha-D-Manp-(1-->2)-alpha-D-Manp corresponds to the terminal end of the glycosylinositolphospholipid oligosaccharide of the protozoan Trypanosoma cruzi, the causative agent of Chagas' disease. Syntheses of methyl or ethylthio glycosides of the terminal disaccharide, trisaccharide, tetrasaccharide, and pentasaccharide corresponding to this structure are described. These syntheses employ the selective activation of a phenyl 1-selenogalactofuranoside or a phenyl 1-selenomannopyranoside donor over ethyl 1-thioglycoside acceptors with NIS-TfOH.  相似文献   

7.
A protein kinase activity, which uses casein as a substrate, has been purified to homogeneity from the epimastigote stage of Trypanosoma cruzi, by sequential chromatography on Q sepharose, heparin sepharose, phenyl sepharose, and alpha-casein agarose. An apparent molecular weight of 36,000 was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration chromatography and sedimentation analyses demonstrated that the purified native enzyme is a monomer with a sedimentation coefficient of 2.9 S. The hydrodynamic parameters indicated that the shape of the protein is globular with a frictional ratio f/f(o) = 1.36 and a Stokes radius of 27.7 A. When two selective peptide substrates for protein kinases CK1 and CK2 were used (RRKDLHDDEEDEAM. SITA and RRRADDSDDDDD, respectively), the purified kinase was shown to predominantly phosphorylate the CK1-specific peptide. Additionally, the enzyme was inhibited by N-(2-amino-ethyl)-5-chloroisoquinoline-8-sulfonamide, a specific inactivator of CK1s from mammals. Based on these results, we concluded that the purified kinase corresponds to a parasite CK1.  相似文献   

8.
Following the rapid enzymatic transfer of an oligosaccharide (GlcNAc2Man9Glc3) from a lipid carrier to endogenous protein acceptors in membrane preparations from NIL fibroblasts, the transferred oligosaccharide chain undergoes processing. Protein-bound oligosaccharides, released from the polypeptide backbone by treatment with endo-beta-N-acetylglucosaminidase H, were analyzed by gel filtration and by susceptibility to alpha-mannosidase digestion. The initial stages of this processing in vitro consist of sequential excision of 3 glucose residues prior to the removal of mannose residues. The array of oligosaccharides generated in vitro by membrane preparations from NIL cells appears to be identical with processed oligosaccharides derived in vivo in intact NIL cells.  相似文献   

9.
Ceramide mono (CMH) or dihexoside (CDH) fractions from Trypanosoma cruzi (Dm28c clone) were identified as glucosyl and lactosylceramides containing non-hydroxylated fatty acids. The di-glycosylated form was much more efficiently recognized by sera from T. cruzi-immunized rabbits, indicating that glycosylation influences antigenicity. Fatty acid hydroxylation was also a determinant of serological reactivity, since an alpha-hydroxylated CMH, only present at the Y clone, was recognized by the hyperimmune sera. In summary, these data indicate that T. cruzi CMHs with non-hydroxylated fatty acids are unable to induce antibody responses in animal hosts, which is reverted by the addition of a sugar residue or an alpha-hydroxyl group.  相似文献   

10.
Trypanosoma cruzi, the etiological agent of Chagas'' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite’s replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.  相似文献   

11.
The karyotype and ploidy of Trypanosoma cruzi.   总被引:9,自引:1,他引:8       下载免费PDF全文
Little is known of the number or organization of chromosomes in Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease in man in the New World. Straightforward cytogenetic analysis is precluded because trypanosome chromosomes fail to condense during the cell cycle. We have size-fractionated the chromosome-sized DNA molecules of representative T. cruzi strains by pulsed field gradient (PFG) gel electrophoresis and located several housekeeping genes by Southern blotting using cDNA probes from the related trypanosome T. brucei. We show that DNA molecules from homologous chromosomes of T. cruzi migrate differently in the PFG system and infer that T. cruzi epimastigotes are at minimum diploid. In contrast to T. brucei, mini-chromosomes are absent in T. cruzi. All the housekeeping genes studied hybridize to DNA molecules which can be resolved in the PFG system, suggesting that T. cruzi may have no chromosomes larger than a few megabase pairs.  相似文献   

12.
13.
14.
The cytostome of Trypanosoma cruzi and T. conorhini   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
17.
18.
Chagas disease is caused by Trypanosoma cruzi and affects 18 million people in Central and South America. Here we analyzed the exposure of phosphatidylserine by the different forms of the parasite life cycle. Only the infective trypomastigotes, but not the epimastigotes or intracellular amastigotes, expose this phospholipid. This triggers a transforming growth factor beta signaling pathway, based on phosphorylated Smad 2 nuclear translocation, leading to iNOS disappearance in infected macrophages. This macrophage deactivation favors the survival of this intracellular parasite. Thus, phosphatidylserine exposure may be used by T. cruzi to evade innate immunity and be a common feature of obligate intracellular parasites that have to deal with activated macrophages.  相似文献   

19.
Trypanosoma cruzi epimastigotes show gamma-glutamyltranspeptidase activity which has characteristics significantly different than the mammalian enzyme. The protozoan enzyme is localized in the cytosolic fraction, it has a Km of 1.6 mM and a Vmax of 17.4 nmol/min/mg protein with L-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor, and an optimun pH range from 7.5 to 8.0. The best amino acid acceptors were L-histidine, L-asparagine, L-aspartate, L-glutamate and L-proline, but L-glutamine was a very poor acceptor. The enzyme was very sensitive to inhibition by 6-diazo-5-oxo-L-norleucine (k2 = 4.0 X 10(5)/M per min) and O-diazo-acetyl-L-serine (k2 = 1.1 X 10(4)/M per min). Phenobarbital (k2 = 8.38/M per min) and L-serine borate (Ki = 34 mM) were poor inhibitors. The activity of the enzyme was not correlated with the logarithmic phase of growth of the parasites and steadily decreases with the age of the cultures.  相似文献   

20.
A. J. Solari 《Chromosoma》1980,78(2):239-255
The fine structure of nuclear division in the hemoflagellate Trypanosoma cruzi has been studied with serial sections and three-dimensional reconstructions of each divisional stage. After a preliminary stage in which the chromatin becomes dispersed, there is an equatorial stage defined by the appearance of an arranged set of ten dense plaques located about the equatorial region of the nucleus. At this stage a regular microtubular spindle is formed in the nucleus. Each plaque has a symmetrical structure formed by transverse bands and the bands are formed by tightly packed fibrillar material. The wide faces of the plaques are associated with tangential microtubules coming from the poles while the front and rear edges are free to associate with chromatin. Although structural continuity between chromatin fibers and the material of the plaques is possible, this continuity has not been proved. The equatorial spindle is formed by about 120 microtubules arranged in two sets of about 60 microtubules running from each pole to the dense plaques and divided into discrete bundles which reach a single plaque. The microtubules of each bundle may pass tangential to the wide faces of the plaque and end about 0.2 m beyond it, or they may end at the pole-facing edges of the plaque. No continuous, interpolar microtubules were observed at this stage. At the beginning of the elongational stage the dense plaques split into halves and each set of half-plaques migrates to one pole. During mid-elongational stage the pole-converging microtubules and the polar bulges disappear and microtubules become rearranged between the two sets of half-plaques. During late elongational stages, continuous microtubules run between the two sets of half-plaques and maximum nuclear elongation is attained. Chromatin remains dispersed throughout nuclear division. Two main movements have been observed in these mitotic nuclei: the migration of half-plaques to the poles and the elongation of the nucleus. Both these movements are accompanied by large changes in the architecture of the microtubular spindle and are probably dependent on microtubular function. It is concluded that the dense plaques play a kinetochore-like role and thus T. cruzi would have ten chromosomal units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号