首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Scopolamine (0.15 mg/kg), a muscarinic antagonist, when administered during training or at a discrete 6-h posttraining time point, is demonstrated to inhibit the recall of a step-down passive avoidance response when tested at 24 and 48 h after task acquisition. Nefiracetam (3 mg/ kg), a piracetam-related nootropic, when given with scopolamine during training tended to improve task recall, and this effect was more pronounced when given at the 6-h posttraining time. Co-administration of nefiracetam with scopolamine was not necessary to achieve the antiamnesic action, as nefiracetam given during training significantly improved the memory deficits produced by scopolamine at the 6-h posttraining time. The paradigm-specific increase in hippocampal neural cell adhesion molecule sialylation, which is observed during consolidation of a passive avoidance response, was attenuated by the presence of scopolamine during training and at the 6-h posttraining time, and this effect was reversed by co-administration of nefiracetam, albeit in a paradigm-independent manner. These results suggest nefiracetam exerts a neurotrophic action that protects memory consolidation from drug inter- ventive insults.  相似文献   

2.
The neural cell adhesion molecule (NCAM) mediates cell adhesion and signal transduction through trans-homophilic- and/or cis-heterophilic-binding mechanisms. Intraventricular infusions of anti-NCAM have revealed a functional requirement of NCAM for the consolidation of memory in rats and chicks in a specific interval 6-8 h after training. We have now extended these studies to a synthetic peptide ligand of NCAM (C3) with an affinity for the IgI domain and the capability of inhibiting NCAM-mediated neurite outgrowth in vitro. Intraventricular administration of a single 5 microg bolus of C3 strongly inhibited recall of a passive avoidance response in adult rats, when given during training or in the 6-8-h posttraining period. The effect of C3 on memory consolidation was similar to that obtained with anti-NCAM as the amnesia was not observed until the 48-h recall time. The unique amnesic action of C3 during training could be related to disrupted NCAM internalization following training. In the 3-4-h posttraining period NCAM 180, the synapse-associated isoform, was down-regulated in the hippocampal dentate gyrus. This effect was mediated by ubiquitination and was prevented by C3 administration during training. These findings indicate NCAM to be involved in both the acquisition and consolidation of a passive avoidance response in the rat. Moreover, the study provides the first in vivo evidence for NCAM internalization in learning and identifies a synthetic NCAM ligand capable of modulating memory processes in vivo.  相似文献   

3.
Abstract: Animals trained in a passive avoidance task exhibit a transient time-dependent increase in hippocampal neural cell adhesion molecule (NCAM) polysialylation at 12–24 h following the initial learning trial. Using immunocytochemical techniques with a monoclonal antibody that specifically recognises NCAM-polysialic acid homopolymers, a distinct population of granule-like cells, at the border of the granule cell layer and the hilus in the dentate gyrus of the adult rat hippocampus, has been demonstrated to exhibit time-dependent change in frequency at 10–12 h following the initial learning of a one-trial, step-through, passive avoidance response. These changes were paradigm specific as they failed to occur in those animals rendered amnesic with scopolamine. These polysialylated dentate neurons are not de novo granule cell precursors as administration of 5-bromo-2'-deoxyuridine every 2 h from the point of learning to the 12-h posttraining time showed no significant difference between trained and passive animals in the small number of heterogeneously distributed, labelled cells. These findings directly identify a morphological substrate of memory, implied by previous correlative and interventive studies on NCAM function.  相似文献   

4.
Abstract: Polysialylated neurons, located at the inner border of the dentate granule cell layer, have been demonstrated to exhibit time-dependent change in their frequency at 10–12 h following training in the Morris water maze, a spatial learning paradigm. Such a change was not observed in animals required to locate a visible platform or in those rendered amnesic with scopolamine. This frequency response was capable of rapid reactivation following further training stimuli in a manner that was independent of circadian influence. These learning-associated modulations in neural cell adhesion molecule (NCAM) polysialylation state did not increase in magnitude despite improved performance, suggesting their activation is required for processing information rather than contributing to previously stored, task-associated memory. An increase in NCAM polysialylation appears to be a universal learning response to both spatial and nonspatial paradigms as similar time-dependent changes occurred following training in a one-trial, step-through, passive avoidance response subsequent to water maze training.  相似文献   

5.
The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal perturbing drugs colchicine and cytochalasin D. These results indicated that the tubulin and actin cytoskeletons were not critically required for adhesion to NCAM and make it unlikely that the cell surface ligand for NCAM is an integrin. Adhesion was however temperature dependent, strengthening greatly after a brief incubation at 37 degrees C. CHO cells transfected with NCAM cDNAs did not adhere specifically to substratum-bound NCAM and pretreatment of N2A cells and retinal cells with anti-NCAM antibodies did not inhibit adhesion to substratum-bound NCAM. These results suggest that a heterophilic interaction between substratum-adsorbed NCAM and a non-NCAM ligand on the surface of the probe cells affects adhesion in this system and support the possibility that heterophilic adhesion may be a function of NCAM in vivo.  相似文献   

6.
Schäfer  R.  Wernig  A. 《Brain Cell Biology》1998,27(8):615-624
The neural cell adhesion molecule (NCAM) is upregulated in paralyzed muscles but the functional role of this upregulation is not clear. We have investigated the possible involvement of NCAM in botulinum toxin-induced axonal sprouting in mouse soleus muscles. Starting 4 days after botulinum toxin-A injection, the paralyzed muscles were exposed daily for 6 or 10 days to either rabbit polyclonal NCAM antibody or control solutions (preimmune serum or saline) or remained without further treatment. By 10 days after botulinum toxin injection, the mean number of sprouts and the mean total length of sprouts, respectively, in zinc iodide<@150>osmium-stained preparations were 2.2 and 212 μm in untreated and control treated muscles but 1.0 and 51 μm in anti-NCAM treated muscles. By 14 days, the mean number of sprouts rose to 2.9 in untreated muscles but only 1.6 in anti-NCAM treated muscles. Macrophages/monocytes, probably originating from neighboring tissue damaged by the daily injections, were present in muscles of all groups. No T lymphocytes and no signs of muscle fiber damage were found, however, rendering antibody-mediated cytotoxic reactions as unlikely. From the blocking effects of anti-NCAM, it is concluded that NCAM plays a major role in the growth of paralysis-induced axonal sprouts.  相似文献   

7.
NCAM in the differentiation of embryonic lens tissue   总被引:1,自引:0,他引:1  
The role of the neural cell adhesion molecule (NCAM)2 in ocular lens differentiation was investigated in chicken embryos. Changes in expression of NCAM were documented by immunohistology of frozen sections. This analysis revealed that NCAM diminished during lens fiber differentiation, in contrast to the gap junction-associated protein MP26 which became more abundant. The form of NCAM expressed was determined by Western blot analysis of proteins extracted from the different regions of the Embryonic Day 6 lenses. All regions expressed NCAM with an apparent molecular weight of 140 kDa and relatively low levels of polysialylation. The function of NCAM in lens differentiation was investigated using antibodies that inhibit NCAM-mediated adhesion. Two parameters that change during maturation of the lens epithelial cells were monitored: the thickness of the tissue, indicating the length of lens cells, and the particle arrangement of gap junctions, reflecting the state of junctional differentiation. When epithelial cell explants of Embryonic Day 6 lenses were cultured for 5 days, the cells elongated and displayed an increase in the loose, random intramembranous particle arrangements characteristic of maturing lens fiber gap junctions. When the explants were cultured in the presence of anti-NCAM Fabs, the epithelia were thinner than in matched controls and had particle arrangements characteristic of a less mature state. The expression of NCAM during lens differentiation and the effects of attenuating NCAM function suggest that adhesion mediated by NCAM is an essential event in lens cell differentiation.  相似文献   

8.
Within the rat medial temporal lobe, transient modulations of neural cell adhesion molecule (NCAM) polysialylation have been observed to follow spatial learning. These have been attributed to neuroplastic events associated with the processing of information destined for long term memory consolidation. To determine if similar events are associated with avoidance learning, we investigated change in polysialylated cell number in the entorhinal, perirhinal, and piriform cortex, following acquisition of a passive avoidance task in the rat. Direct quantification of polysialylated neurons in layer II of these cortical regions revealed a significant increase in polysialylated cell frequency at 12 h following passive avoidance training. Unlike spatial learning, the increased expression of polysialylated neurons persisted for up to 24-48 h following training. In the more dorsal aspect of the perirhinal/entorhinal cortex, this increase was found to be specific to learning, as it was not observed in animals rendered amnesic with scopolamine. By contrast, change in polysialylated cell frequency in the ventral aspect of the medial temporal lobe was only partially reduced by amnesic doses of scopolamine. The persisting activation of NCAM polysialylation in the more dorsal aspects of the perirhinal and entorhinal cortex is suggested to reflect the need for more extensive synaptic alterations, as compared to those required for the consolidation of spatial learning. Moreover, the neuroplastic modulations observed in the more ventral regions of the entorhinal and perirhinal cortex appear to be a unique aspect of avoidance conditioning that reflects the activation of alternative learning strategies associated with motivational and/or contextual parameters of the task.  相似文献   

9.
Considerable evidence points to an involvement of neural cell adhesion molecule (NCAM) in myoblast fusion. Changes in the level of NCAM expression, isoform specificity, and localization in muscle cells and tissues correspond to key morphogenetic events during muscle differentiation and repair. Furthermore, anti-NCAM antibodies have been shown by others to reduce the rate of myoblast fusion, whereas overexpression of NCAM cDNAs increases the rate of myoblast fusion compared to controls. In this study we have used a novel fusion assay based on intracistronic complementation of lacZ, in combination with fluorescent X-gal histochemistry and immunocytochemistry to assess levels of NCAM expression in individual muscle cells. Our results indicate that a substantial proportion of newly fused myoblasts have NCAM expression levels unchanged from the levels of the surrounding unfused population suggesting that increased expression of NCAM is not required for wild-type myoblasts to fuse. Moreover, pure populations of primary myoblasts isolated from mice homozygous null for NCAM and therefore lacking the molecule, when placed in differentiation medium, consistently fused to form contractile myotubes with kinetics equivalent to wild-type primary myoblasts. We conclude that the increase in expression of NCAM, although typically observed during myogenesis, is not essential to myoblast fusion to form myotubes.  相似文献   

10.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

11.
N Moran  E Bock 《FEBS letters》1988,242(1):121-124
A solid-phase assay has been developed for the investigation of the kinetics of neural cell adhesion molecule (NCAM) binding. Using this assay we can show that NCAM binds to itself in a time-dependent and saturable manner. Binding constants (KB values) of 6.9 x 10(-8) M and 1.23 x 10(-6) M, respectively, were obtained for adult and newborn rat NCAM homophilic binding. Binding is specifically inhibited by Fab' fragments of polyclonal anti-NCAM antibodies but is unaffected by heparin or chondroitin sulphate. This indicates that the NCAM homophilic binding site is separate from and independent of the heparin-binding site and that a developmental modification, probably polysialation, gives rise to marked differences in the adhesive properties of NCAM.  相似文献   

12.
Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos   总被引:13,自引:0,他引:13  
Using a classical neural induction protocol (H. Spemann and H. Mangold (1924). Roux' Arch. Entwicklungsmech. Org. 123, 389-517), it has been demonstrated that the sustained presence of NCAM in Xenopus embryos, as detected by immunohistochemistry, was confined to the experimentally induced nervous system and the primary host nervous system. Furthermore, in vitro NCAM expression by dorsal blastopore lip and animal pole tissue was detected only when the two tissues were cultured in contact. These and other results show that readily detected and sustained levels of NCAM expression in Xenopus can be used as a marker for neural tissue and an early positive indicator that neural induction has occurred. They suggest that the observed levels of NCAM are a consequence of and not a prerequisite for induction. Using NCAM expression in vitro to determine the minimum time necessary for this induction to occur in vivo, it was found that NCAM was first detected in cultured animal pole that had been removed at stage 10.75 or later. Thus, an inductive step necessary and sufficient for stimulation of NCAM expression in animal pole tissues had not occurred or was reversible prior to the first 2 to 2.5 hr of gastrulation.  相似文献   

13.
In order to determine how glycosylation changes associated with cellular differentiation may be influenced by the basal cellular sialylation potential, the effect of retinoic acid (RA)-induced differentiation was investigated in neuroblastoma cells expressing differing levels (and activities) of the 2,6(N) sialyltransferase (ST6N) enzyme. The increase in ST activity was proportional to the basal cellular sialylation potentials with the high activity clones showing the greatest increase. This was paralleled by an up-regulation of the level of overall sialoglycoprotein glycosylation level. An increase in the levels of the polysialic acid (PSA) epitope was associated with a parallel increase in the levels of the neural cell adhesion molecule (NCAM) protein backbone although there was no overall change in the PSA:NCAM ratio following RA treatment.  相似文献   

14.
Neural cell adhesion molecule (NCAM) and F3 are both axonal adhesion molecules which display homophilic (NCAM) or heterophilic (NCAM, F3) binding activities and participate in bidirectional exchange of information between neurones and glial cells. Engineered Fc chimeric molecules are fusion proteins that contain the extracellular part of NCAM or F3 and the Fc region of human IgG1. Here, we investigated the effect of NCAM-Fc and F3-Fc chimeras on Schwann cell (SC) migration. Binding sites were identified at the surface of cultured SCs by chimera coated fluorospheres. The functional effect of NCAM-Fc and F3-Fc binding was studied in two different SC migration models. In the first, migration is monitored at specific time intervals inside a 1-mm gap produced in a monolayer culture of SCs. In the second, SCs from a dorsal root ganglion explant migrate on a sciatic nerve cryosection. In both systems addition of the chimeras significantly increased the extent of SC migration and this effect could be prevented by the corresponding anti-NCAM or anti-F3 blocking antibodies. Furthermore, antiproteoglycan-type protein tyrosine phosphatase zeta/beta (RPTPzeta/beta) antibodies identified the presence of RPTPzeta/beta on SCs and prevented the enhancing effect of soluble F3 on SC motility by 95%. The F3-Fc coated Sepharose beads precipitated RPTPzeta/beta from SC lysates. Altogether these data point to RPTPzeta/beta is the putative F3 receptor on SCs. These results identify F3 and NCAM receptors on SC as potential mediators of signalling occurring between axons and glial cells during peripheral nerve development and regeneration.  相似文献   

15.
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.  相似文献   

16.
New modalities of treatment for small-cell lung cancer (SCLC) are needed, because the majority of patients continue to die of disseminated disease despite an initial response to conventional chemotherapy. Abnormal surface expression of the neural-cell adhesion molecule (NCAM) has been noted to be highly associated with SCLC. We examined the ability and efficiency of a streptavidin-Protein A (ST-PA) fusion protein complexed with an anti-NCAM monoclonal antibody (Mab) to transfer biotinylated beta-galactosidase into human SCLC cell lines NCI-H69, NCI-H526, and NCI-H446. When the surface molecule NCAM was targeted with this system, more than 99% of the targeted cells internalized and exhibited beta-galactosidase activity. In addition, we evaluated cytotoxic activity against SCLC lines NCI-H69 and NCI-H526 by efficient delivery of biotinylated glucose oxidase using the same ST-PA/anti-NCAM Mab complex. Cytotoxicity of the transduced cells (SCLC) was 10-fold and 100-fold greater, respectively, than the glucose oxidase control. This system could be widely applied for specific therapy of cancer cells by targeting unique surface molecules (antigens) using the corresponding Mab/ST-PA complex to transfer a variety of effector molecules; e.g., immunotoxic compounds, into target cells with a high degree of efficiency and specificity.  相似文献   

17.
Hu ZA  Tan YL  Luo J  Li HD  Li XC  Yu ZP 《生理学报》2004,56(1):89-94
既往研究发现,神经细胞粘附分子(neural cell adhesion molecules,NCAM)对海马CA1区突触传递长时程增强(longterm potentiation,LTP)的诱导和维持极为关键。本文采用原位杂交法和Western blot法,观察了大鼠海马腑片LTP诱导和维持过程中NCAM mRNA和蛋白水平的动态变化过程。结果显示,强直刺激诱发fEPSP斜率升高10 min时,海马CA1区NCAM mRNA染色阳性神经元数量显著增加(76.6±11.5个),NCAM蛋白水平亦明显升高(7.190±0.64任意单位/50μg蛋白)。强直刺激诱发fEPSP斜率升高1 h时,NCAM mRNA染色阳性神经元数量为73.3±14.0个,NCAM蛋白量为9.031±0.71任意单位/50 μg蛋白;与强直刺激后10 min比较,NCAM mRNA表达无显著变化,而NCAM蛋白水平变化明显。NMDA受体特异阻断剂AP-5在损害LTP的同时,显著抑制NCAM mRNA和蛋白的增加。实验结果表明,在大鼠海马LTP诱导和维持过程中,NCAM mRNA增强的表达相对稳定,而NCAM蛋白水平呈现先低后高的变化。  相似文献   

18.

Background

Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as α-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM.

Methods

We treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 μmol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals.

Results

For all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for α-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting.

Conclusion

The mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM.  相似文献   

19.
Cyclophosphamide is the most widely used alkylating agent in clinical medicine. The usefulness of this drug is often limited by its propensity to produce hemorrhagic cystitis. To be active cyclophosphamide must be metabolized by the mixed function oxidase system. It has been previously demonstrated that the oncolytic activity and host lethality of cyclophosphamide are dependent upon circadian fluctuations. When cyclophosphamide is administered i.p. to male mice there is a dose dependent increase in urinary bladder weight. Histopathologic examination of these bladders revealed hemorrhage, edema, inflammation and stretching of the epithelial lining. When administered i.p. at 4-h intervals throughout a 24-h time period, cyclophosphamide produced maximum bladder damage when administered at 0500 and 1700 and little or no damage to the bladder when administered at 0100 or 1300. These studies suggest that cyclophosphamide induced cystitis, a toxicity resulting from the metabolic production of acrolein, may also be dependent upon chronobiologic fluctuations.  相似文献   

20.
Abstract: Previously, we have shown that oligodendrocyte adhesion molecules are related to the 120,000–Mr neural cell adhesion molecule (NCAM-120). In this report, we present further evidence that the oligodendrocyte adhesion molecule is NCAM-120. Studies on the expression of NCAM-120 and other molecular forms of NCAM in vivo in rat brain, in vitro in primary mixed cultures, and in cultures enriched for oligodendrocytes are described. Western blot analysis of rat brain using anti-NCAM showed that NCAM-120 first appears at postnatal day 7 and increases in quantity thereafter, coincident with the development of oligodendrocytes in vivo and comparable to the expression of myelin basic protein. Purified oligodendrocytes from 4-week-old rat brains expressed only NCAM-120. Quantitation of various forms of NCAMs in rat brain showed marked age-related differences in the expression of three molecular forms of NCAM. Immunofluorescence analysis showed that oligodendrocytes, at all ages tested, expressed NCAM, but in older oligodendrocytes, the intensity of staining was less. Western blot analysis of oligodendrocyte-enriched cultures showed that from day 1 after isolation (12 days of age) through day 7 after isolation (18 days of age) only NCAM-120 is seen. A possible role for NCAM in myelination and remyelination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号