首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mitochondrial (mt) nucleoids were isolated with a high degreeof purity from the yeast Pichia jadinii, in which the mitochondrialDNA (mtDNA) is linear. Field-inversion gel electrophoresis (FIGE)revealed that significant amounts of mtDNA could be isolatedintact, as linear molecules of 41 kbp, from the isolated mt-nucleoids.Fifteen different proteins were detected in the mt-nucleoidfraction and, eight of these proteins bound to DNA. The patternsof mt-nucleoid proteins and of the DNA-binding proteins aftergel electrophoresis in the presence of SDS were somewhat differentfrom those of such proteins from Saccharomyces cerevisiae. Thecorresponding proteins isolated from the mt-nucleoids of fourother species of yeast in the genera Pichia and Williopsis alsodiffered from one another in terms of electrophoretic mobilityin the presence of SDS. In immunoblotting experiments, antibodiesthat had been raised against the 67-kDa protein of mt-nucleoidsfrom S. cerevisiae and the YMN-1 monoclonal antibody that isspecific for a 48-kDa protein in the mt-nucleoids from S. cerevisiaedid not recognize any proteins in the mt-nucleoids from Pichiajadinii and four other species of yeast. The results suggestthe considerable diversity of the proteins in the mt-nucleoidsof yeasts. (Received March 28, 1996; Accepted June 19, 1996)  相似文献   

2.
Mitochondrial (mt) nucleoids were isolated from yeast Kluyveromyces lactis with morphological intactness. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) revealed more than 20 proteins that are associated with the mt-nucleoids. However, the protein profile of the mt-nucleoids of K. lactis was significantly different from that of the mt-nucleoid proteins from Saccharomyces cerevisiae. SDS-DNA PAGE, which detected an Abf2p, a major mitochondrial DNA-binding protein, among the mt-nucleoid proteins of S. cerevisiae on a gel, detected only a 17-kDa protein in the K. lactis mt-nucleoid proteins. The 17-kDa protein was purified as homogeneous from the mt-nucleoids by a combination of acid extraction, hydroxyapatite chromatography and DNA-cellulose chromatography. The 17-kDa protein introduced a negative supercoil into circular plasmid DNA in the presence of topoisomerase I, as does S. cerevisiae Abf2p, and it packed K. lactis mtDNA into nucleoid-like particles in vitro. These results, together with the determination of the N-terminal amino acid sequence, suggested that the 17-kDa protein is an Abf2p homologue of K. lactis and plays structural roles in compacting mtDNA in cooperation with other nucleoid proteins.  相似文献   

3.
Sato H  Miyakawa I 《Protoplasma》2004,223(2-4):175-182
Summary. Mitochondrial-nucleoid (mt-nucleoid) proteins of the yeast Saccharomyces cerevisiae were separated by two-dimensional gel electrophoresis. Analysis of the N-terminal amino acid sequence showed that a 22kDa protein which is unique in the mt-nucleoid fraction is an unidentified protein encoded in the open reading frame YGL068W and shows a homology with the ribosomal protein L7/L12 of bacteria. We named this protein Mnp1p (for the mitochondrial-nucleoid protein 1). Immunoblotting of each fraction with an anti-Mnp1p antibody during the mt-nucleoid isolation showed that Mnp1p is highly concentrated in the mt-nucleoid fraction. Immunofluorescence microscopy suggested that Mnp1p is localized to mitochondria in vivo, and a significant amount of Mnp1p is associated with the mt-nucleoids. On the other hand, Northern blotting showed that a large amount of large and small mitochondrial ribosomal RNAs was not associated with the mt-nucleoids and remained in the supernatant after the isolation of mt-nucleoids. The null mutation of MNP1 led to a respiratory-deficient phenotype, but the morphology of the mt-nucleoids in the transformants carrying the null mutation was normal. These results suggest that a significant amount of Mnp1p plays a role as a major component of the mt-nucleoids.Correspondence and reprints: Department of Physics, Informatics, and Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan.  相似文献   

4.
Summary A mitochondrion contains multiple copies of mitochondrial DNA (mtDNA) in the mitochondrial nucleoid (mt-nucleoid, synonym for mitochondrial nuclei). Replicaton of mtDNA in the mtnucleoids appears to be regulated within groups of adjacent mtDNA molecules, known as mitochondrial replicon clusters (MRCs). In this study, we isolated structurally intact mt-nucleoids from the plasmodia ofPhysarum polycephalum and characterized DNA synthesis in the isolated mt-nucleoids. The mt-nucleoids were isolated by dissolving the membranes of highly purified mitochondria with 0.5% Nonidet P-40. The structural integrity of the isolated mt-nucleoid was determined by observing the rod shape of the mt-nucleoid and the structure of the MRC. The isolated mt-nucleoids required four deoxyribonucleoside triphosphates and MgCl2 for DNA synthesis. The DNA synthesis was resistant to aphidicolin and showed only low sensitivity to N-ethylmaleimide and to ddTTP, suggesting that the DNA synthesis is catalyzed by plant-type mitochondrial DNA polymerase. The capacity for DNA synthesis in the isolated mt-nucleoids was similar to that in the isolated mitochondria, despite removal of most of the mitochondrial matrix and membrane. Furthermore, visualization of sites of DNA synthesis in vitro revealed that DNA synthesis in the isolated mt-nucleoids occurred in each MRC. These results suggest that the isolated mt-nucleoids are capable of efficient and systematic DNA synthesis in vitro. Therefore, the use of isolated mt-nucleoids should permit in vitro characterization of the molecular mechanism of mtDNA replication in the MRC.Abbreviations BrdU 5-bromodeoxyuridine - BrdUTP 5-bromo-deoxyuridine triphosphate - DAPI 4,6-diamidino-2-phenylindole - dNTP deoxyribonucleoside triphosphate - ddCTP dideoxycytidine triphosphate - NEM N-ethylmaleimide - MRC mitochondrial replicon cluster; mt mitochondrial - NP-40 Nonidet P-40 - PBS phosphatebuffered saline - PMSF phenylmethanesulfonyl fluoride - rNTP ribonucleoside triphosphate - VIMPCS video-intensified microscope photon-counting system  相似文献   

5.
Mitochondrial nucleoids (mt-nucleoids) isolated from the yeastSaccharomyces cerevisiae were analyzed to identify the proteincomponents that are involved in the compact packaging of mtDNA.The isolated mt-nucleoids were disassembled by the additionof 2 M NaCl and the disassembled mt-nucleoids were reassembledonce again into compact structures by dialysis against a bufferthat contained NaCl at concentrations below 0.1 M, as monitoredby staining of the DNA with 4',6-diamidino-2-phenylindole. DNA-binding proteins with molecular masses of 67 kDa, 52 kDa,50 kDa, 38 kDa, 30 kDa and 20 kDa were separated from isolatedmt-nucleoids by column chromatography on DNA cellulose afterdigestion of mt-nucleoids by DNase I in the presence or absenceof 2 M NaCl. Purified mtDNA was compactly packaged into nucleoid-likestructures upon the addition of fractions that contained DNA-bindingproteins and subsequent dialysis to reduce the concentrationof NaCl. Five proteins, with molecular masses of 67 kDa, 52kDa, 50 kDa, 38 kDa and 30 kDa, respectively, had lower affinityfor double-stranded DNA than that of the 20-kDa protein. Thefraction that contained the five DNA-binding proteins otherthan the 20-kDa protein was also able to fold mtDNA compactlyinto nucleoid-like structures. By contrast, the combinationof the 20-kDa protein and mtDNA resulted in formation of lesstightly packed, string-of-bead structures. These results suggestthat at least six different DNA-binding proteins are involvedin the organization of the mt-nucleoids. (Received April 7, 1995; Accepted July 10, 1995)  相似文献   

6.
Summary The yeast cellsSaccharomyces cerevisiae grown up to stationary phase under either anaerobic conditions, or aerobic conditions in the presence of a respiratory inhibitor, antimycin A, had distinctive giant mitochondrial nucleoids (mt-nucleoids) (apparent diameter 0.6–0.9 m) in contrast with the small mt-nucleoids (apparent diameter 0.2–0.4 m) in respiratory-sufficient cells grown aerobically, as revealed by DAPI-fluorescence microscopy. The cytoplasmic respiratory-deficient cells (rho cells), which were induced by treatment of wild-type cells with ethidium bromide, showed both giant and small mt-nucleoids of irregular size. In order to examine the structural and functional differences between giant and small mt-nucleoids, the former were successfully isolated from spheroplasts of three different cells by differential centrifugation and centrifugation on a discontinuous sucrose gradient. The isolated giant mt-nucleoids were intact in the morphology and were free of significant contamination by nuclear chromatin. The number of protein components involved in each of three different giant mt-nucleoids was similar to the number in small mt-nucleoids from aerobically grown cells, though a few noticeable differences were also recognized. DNA-binding proteins with molecular masses of 67 kDa, 52 kDa, 50 kDa, 38 kDa, 26 kDa, and 20 kDa were the main components of small mt-nucleoids from aerobically grown cells as detected by chromatography on native DNA-cellulose. In contrast, the 67 kDa and 52 kDa proteins were hardly detected in corresponding fractions of giant mt-nucleoids from anaerobically grown cells and from rho cells grown aerobically. On the other hand, mt-nucleoids from aerobically grown cells in the presence of antimycin A seemed to lack the 67 kDa protein but to have a small amount of the 52 kDa protein. This is the first demonstration of the variance of protein species involved in yeast mt-nucleoids according to the respiratory activity of mitochondria.  相似文献   

7.
To elucidate the role of Abf2p, a major mitochondrial DNA-binding protein in the yeast Saccharomyces cerevisiae, we examined the morphology of the mitochondrial nucleoids (mt-nucleoids) in an ABF2-deficient mutant (Δabf2) in vivo and in vitro by 4',6-diamidino-2-phenylindole (DAPI) staining. The mt-nucleoids appeared as diffuse structures with irregular-size in Δabf2 cells that were grown to log phase in YPG medium containing glycerol, in contrast to the strings-of-beads appearance of mt-nucleoids in wild-type cells. In addition, DAPI-fluorescence intensity of the mt-nucleoids transmitted to the bud was significantly lower in Δabf2 cells than in wild-type cells at log phase. However, the lack of Abf2p did not affect the morphology or segregation of mitochondria. The protein composition of the mt-nucleoids isolated from Δabf2 cells grown to stationary phase in YPG medium was very similar to that of the mt-nucleoids isolated from wild-type cells cultured under the same conditions, except for the lack of Abf2p. These results together suggested that in log-phase cells, the lack of Abf2p influences not only the morphology of mt-nucleoids but also their transmission into the bud. On the other hand, our result suggested that in stationary-phase cells, the lack of Abf2p does not significantly alter the protein composition of the mt-nucleoids.  相似文献   

8.
The behavior of cell nuclei, mitochondrial nucleoids (mt-nucleoids) and plastid nucleoids (ptnucleoids) was studied in the root apical meristem of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4′-6-diamidino-2-phenylindole for light-microscopic autoradiography and microphotometry. Synthesis of cell nuclear DNA and cell division were both active in the root apical meristem between 0 μm and 300 μm from the central cells. It is estimated that the cells generated in the lower part of the root apical meristem enter the elongation zone after at least four divisions. Throughout the entire meristematic zone, individual cells had mitochondria which contained 1–5 mt-nucleoids. The number of mitochondria increased gradually from 65 to 200 in the meristem of the central cylinder. Therefore, throughout the meristem, individual mitochondria divided either once or twice per mitotic cycle. By contrast, based on the incorporation of [3H]thymidine into organelle nucleoids, syntheses of mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) occurred independently of the mitotic cycle and mainly in a restricted region (i.e., the lower part of the root apical meristem). Fluorimetry, using a videointensified microscope photon-counting system, revealed that the amount of mtDNA per mt-nucleoid in the cells in the lower part of the meristem, where mtDNA synthesis was active, corresponded to more than 1 Mbp. By contrast, in the meristematic cells just below the elongation zone of the root tip, the amount of mtDNA per mt-nucleoid fell to approximately 170 kbp. These findings strongly indicate that the amount of mtDNA per mitochondrion, which has been synthesized in the lower part of the meristem, is gradually reduced as a result of continual mitochondrial divisions during low levels of mtDNA synthesis. This phenomenon would explain why differentiated cells in the elongation zone have mitochondria that contain only extremely small amounts of mtDNA. This work was supported by a Grant-in Aid (T.K.) for Special Research on Priority Areas (Project No. 02242102, Cellular and Molecular Basis for Reproduction Processes in Plants) from the Ministry of Education, Science and Culture of Japan and by a Grant-in Aid (T.K.) for Original and Creative Research Project on Biotechnology from the Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

9.
A 26-kDa protein with highly basic pI was purified from the mitochondrial (mt-) nucleoids of the yeast Pichia jadinii by a combination of acid extraction, hydroxyapatite chromatography and DNA-cellulose chromatography. The 26-kDa protein has the ability to introduce a supercoil into circular plasmid DNA in the presence of topoisomerase I and to package mtDNA into nucleoid-like aggregates. The mt-nucleoids isolated from P. jadinii cells were disassembled in the presence of 2 M NaCl and reassembled into nucleoid-like aggregates by the removal of the salts. During the course of the reassembly of the mt-nucleoids, three specific proteins of 20 kDa, 26 kDa and 56 kDa predominantly precipitated after the centrifugation of the reassembled mt-nucleoids. These results suggest that the 26-kDa protein of P. jadinii has a similar function in the packaging of mtDNA to Abf2p, a major mitochondrial DNA-binding protein in Saccharomyces cerevisiae.  相似文献   

10.
11.
A murine mAb, STEGI 1, was generated against a 30-kDa raf protein purified from an Escherichia coli expression vector. Immunoblot analysis confirmed that this antibody recognized the original immunizing protein as well as a 44- to 48-kDa protein from several raf-transformed cell lines. Immunoprecipitation experiments isolated a 48-kDa protein from a cell line transfected with a c-raf construct as well as from normal NIH 3T3 fibroblasts. Parallel experiments with polyvalent antiserum prepared against E. coli-derived v-raf (C terminus)-precipitated proteins with apparent Mr of 48 and 74 kDa, as had been described previously. Immunofluorescence flow cytometry of raf-transformed cell lines revealed intense intracytoplasmic staining. This staining was specifically inhibited by preincubation of STEGI 1 with purified raf 30-kDa protein. It should now be possible to more easily assess the role of the raf oncogene product in malignant transformation.  相似文献   

12.
13.
The morphology of mitochondrial nucleoids (mt-nucleoids), mitochondria, and nuclei was investigated during meiosis and sporulation of the diploid cells of the ascosporogenic yeast Saccharomycodes ludwigii. The mt-nucleoids appeared as discrete dots uniformly distributed in stationary-phase cells as revealed by 4',6-diamidino-2-phenylindole (DAPI) staining. Throughout first and second meiotic divisions, the mt-nucleoids moved to be located close to the dividing nuclei with the appearance of dots. On the other hand, mitochondria, which had tubular or fragmented forms in stationary-phase cells, increasingly fused with each other to form elongated mitochondria during meiotic prophase as revealed by 3,3' -dihexyloxacarbocyanine iodide [DiOC(6)(3)] staining. Mitochondria assembled to be located close to dividing nuclei during first and second meiotic divisions, and were finally incorporated into spores. During the first meiotic division, nuclear division occurred in any direction parallel, diagonally, or perpendicular to the longitudinal axis of the cell. In contrast, the second meiotic division was exclusively parallel to the longitudinal axis of the cell. The behavior of dividing nuclei explains the formation of a pair of spores with opposite mating types at both ends of cells. In the course of this study, it was also found that ledges between two spores were specifically stained with DiOC(6)(3).  相似文献   

14.
Mitochondrial nucleoids (mt-nucleoids) of the A2780 line of cultured human cells were stained with DAPI and observed using an epifluorescence microscope. The mt-nucleoids appeared to be organized compactly in mitochondria. Numbers of mt-nucleoids per mitochondrion ranged from 1 to more than 10, and 70% were "multinucleated" mitochondria. Intensities of fluorescence of mt-nucleoids in each mitochondrion were measured by a video-intensified microscope system (VIM system) and copy numbers of mitochondrial DNA (mtDNA) in each mitochondria were determined. The copy numbers of mtDNA per mitochondrion ranged from 1 to 15, and the average was 4.6. Because the cells had 107 mitochondria on average, the copy number of mtDNA per cell was estimated to be about 500.  相似文献   

15.
Nuclei of the dinoflagellate Crypthecodinium cohnii strain Whd were isolated and nuclear proteins were extracted in three fractions, corresponding to the increasing affinity of these proteins to genomic DNA. One fraction contained two major bands (48- and 46-kDa) and antibodies specific to this fraction revealed two major bands by Western blot on nuclear extracts, corresponding to the 46- and 48-kDa bands. The 48-kDa protein was detected in G1 phase but not in M phase cells. An expression cDNA library of C. cohnii was screened with these antibodies, and two different open reading frames were isolated. Dinoflagellate nuclear associated protein (Dinap1), one of these coding sequences, was produced in E. coli and appeared to correspond to the 48-kDa nuclear protein. No homologue of this sequence was found in the data bases, but two regions were identified, one including two putative zinc finger repeats, and one coding for two potential W/W domains. The second coding sequence showed a low similarity to non-specific sterol carrier proteins. Immunocytolocalization with specific polyclonal antibodies to recombinant Dinap1 showed that the nucleus was immunoreactive only during the G1 phase: the nucleoplasm was immunostained, while chromosome cores and nuclear envelopes were negative.  相似文献   

16.
17.
18.
M J Powell  F Z Watts 《Gene》1990,95(1):105-110
We have isolated cDNA and genomic clones encoding a mitochondrial HSP70 protein from Schizosaccharomyces pombe. Nucleotide sequence analysis indicates that the encoded protein is homologous to the HSP70s of other organisms. The highest degree of amino acid conservation is with the proteins encoded by the Escherichia coli dnaK gene, the SSC1 gene of Saccharomyces cerevisiae and the MTP70 gene of Trypanosoma cruzi, the latter two having recently been shown to be located in the mitochondria. Western-blot analysis with immunoglobulin G raised against a peptide corresponding to the C terminus of the SSP1 protein indicates a 70-kDa protein which is associated with the mitochondria.  相似文献   

19.
Summary The behavior of organelle nucleoids in the generative cell was examined at the second (pollen grain) mitosis by epifluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) inOenothera biennis. TheO. biennis generative cell contained a large number of organelle nucleoids distributed randomly in the cytoplasm before mitosis. The epifluorescence images of the nucleoids could be classified distinctly into two groups which corresponded to plastid nucleoids (pt-nucleoids) and mitochondrial nucleoids (mt-nucleoids). Discrimination between pt- and mt-nucleoids was carried out with the aid of DNA immunogold electron microscopy. At metaphase, both pt- and mt-nucleoids migrated to the pole regions of the generative cell. After mitosis, organelle nucleoids in both of the sperm cells scattered in the cytoplasm again. A quantitative examination of pt-nucleoids on 202 pairs of sperm cells showed that the leading sperm cell (Svn) contained 0–39 pt-nucleoids (19.0 ± 7.4) and the trailing sperm cell (Sua) contained 0–40 pt-nucleoids (15.4 ± 6.5). For mt-nucleoids, examination of 28 pairs of sperm cells showed that Svn contained 5–32 mt-nucleoids (14.5 ± 6.8) and Sua contained 6–30 mt-nucleoids (13.4 ±7.5). These results showed that (1) the number of organelle nucleoids per sperm cell varied considerably in the cells studied; (2) quantitative difference in pt- and mt-nucleoids between Svn and Sua could occur in some gametophytes studied; but (3) it was unlikely that there was any pre-differentiational cytoplasm localization and essential sperm heteromorphy with respect to organelle nucleoid content in the gametophyte population.  相似文献   

20.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号